Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Light Quality and Irradiance Level Interaction in the Control of Expression of Light-Harvesting Complex of Photosystem II. Pigments, Pigment-Proteins, and mRNA Accumulation

Kenneth Eskins, Peter Westhoff and Phillip D. Beremand
Plant Physiology
Vol. 91, No. 1 (Sep., 1989), pp. 163-169
Stable URL: http://www.jstor.org/stable/4272323
Page Count: 7
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Light Quality and Irradiance Level Interaction in the Control of Expression of Light-Harvesting Complex of Photosystem II. Pigments, Pigment-Proteins, and mRNA Accumulation
Preview not available

Abstract

Effects of red and blue light at irradiances from 1.6 to 28.3 micromolar per square meter per second on chloroplast pigments, light-harvesting pigment-proteins associated with photosystem II, and the corresponding mRNA were evaluated in maize (Zea mays L.) plants (OP Golden Bantum) grown for 14 days under 14 hours light/10 hours dark cycles. Accumulation of pigments, pigment-proteins, and mRNA was less in blue than in red light of equal irradiance. The difference between blue and red light, however, varied as a function of irradiance level, and the pattern of this variation suggests irradiance-controlled activation/deactivation (switching) of blue-light receptor. The maximum reduction in blue light of mRNA and proteins associated with light-harvesting complex occurs at lower irradiance levels than the maximum reduction of chlorophylls a and b.

Page Thumbnails

  • Thumbnail: Page 
163
    163
  • Thumbnail: Page 
164
    164
  • Thumbnail: Page 
165
    165
  • Thumbnail: Page 
166
    166
  • Thumbnail: Page 
167
    167
  • Thumbnail: Page 
168
    168
  • Thumbnail: Page 
169
    169