Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Genetic Variation for Gas Exchange Rates in Grain Sorghum

Saranga P. Kidambi, Daniel R. Krieg and Darrell T. Rosenow
Plant Physiology
Vol. 92, No. 4 (Apr., 1990), pp. 1211-1214
Stable URL: http://www.jstor.org/stable/4272763
Page Count: 4
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Genetic Variation for Gas Exchange Rates in Grain Sorghum
Preview not available

Abstract

Carbon assimilation rate (A) and stomatal conductance (g) are highly correlated. However, the slope of the A versus g relationship differs among species and environments resulting in differences in gas exchange efficiency which should reflect water use efficiency. The objective of this research was to determine the genetic variation for A and g in grain sorghum (Sorghum bicolor [L.] Moench.). Field experiments were conducted using 30 sorghum hybrids with four water supply treatments. A, g, and leaf water potential (Ψ w) of individual leaves were monitored every 15 to 20 days. Significant genetic variation existed among the hybrids for A and g. Plant age and water supply also affected A and g as expected. When A was regressed on g for each hybrid, large and significant differences existed among the slopes, implying differences in intrinsic gas exchange efficiency. The regression analysis of A and g versus Ψ w suggested that A was more sensitive than g to increasing water stress. Genetic differences in the rate of change in A as water stress increased were observed. Regression analysis was used to evaluate the individual hybrid response relative to other hybrids. Twofold difference in slopes existed for A. These results provide evidence for genetic variation in gas exchange rates which might directly contribute to whole plant water use efficiency and productivity.

Page Thumbnails

  • Thumbnail: Page 
1211
    1211
  • Thumbnail: Page 
1212
    1212
  • Thumbnail: Page 
1213
    1213
  • Thumbnail: Page 
1214
    1214