Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

The Magnitude of the Stomatal Response to Blue Light: Modulation by Atmospheric Humidity

Sarah M. Assmann and David A. Grantz
Plant Physiology
Vol. 93, No. 2 (Jun., 1990), pp. 701-707
Stable URL: http://www.jstor.org/stable/4272885
Page Count: 7
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
The Magnitude of the Stomatal Response to Blue Light: Modulation by Atmospheric Humidity
Preview not available

Abstract

The effect of leaf-air vapor pressure difference (VPD) on the magnitude of the stomatal response to blue light was investigated in soybean (Glycine max) by administering blue light pulses (22 seconds by 120 micromoles per square meter per second) at different levels of VPD and temperature. At 20 °C and 25 °C, the magnitude of the integrated conductance response decreased with increasing VPD (0.4 to 2.6 kiloPascals), due to an earlier onset of stomatal closure that terminated the pulse response. In contrast, at 30 °C this magnitude increased with rising VPD (0.9 to 3.5 kiloPascals), due to an increasing maximum excursion of the conductance response despite the accelerated onset of stomatal closure. When the feedforward response of stomata to humidity caused steady state transpiration to decrease with increasing VPD, the magnitude of the pulse-induced conductance response correlated with VPD rather than with transpiration. This suggests that water relations or metabolite movements within epidermal rather than bulk leaf tissue interacted with guard cell photobiological properties in regulating the magnitude of the blue light response. VPD modulation of pulse magnitude could reduce water loss during stomatal responses to transient illumination in natural light environments.

Page Thumbnails

  • Thumbnail: Page 
701
    701
  • Thumbnail: Page 
702
    702
  • Thumbnail: Page 
703
    703
  • Thumbnail: Page 
704
    704
  • Thumbnail: Page 
705
    705
  • Thumbnail: Page 
706
    706
  • Thumbnail: Page 
707
    707