Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Patterns of Chlorophyll Fluorescence Kinetics in Relation to Growth and Expansion in Cucumber Leaves

Judith G. Croxdale and Kenji Omasa
Plant Physiology
Vol. 93, No. 3 (Jul., 1990), pp. 1083-1088
Stable URL: http://www.jstor.org/stable/4272945
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Patterns of Chlorophyll Fluorescence Kinetics in Relation to Growth and Expansion in Cucumber Leaves
Preview not available

Abstract

Photochemical development was studied in developing cucumber (Cucumis sativus L. cv Hokushin) leaves to determine if the spatial pattern coincided with relative growth rates of expanding leaves, intercalary cell division, or position relative to the vascular tissue. Both leaf surfaces undergo a series of similar changes in chlorophyll a fluorescence kinetics, but the upper surface more quickly achieved the characteristic response. Imaging of fluorescence showed an individual developing leaf has four regions differing in kinetics, but these regions do not coincide with areas of increasing relative growth rate. Two of these regions lie at the leaf edge and their divergent kinetics may be related to structural and physiological features present at this position. A third area with different kinetics, in the basal region of the leaf, is spatially consistent with primordial regions that are clonal during development. The correspondence between areas of clonal growth and specific fluorescence kinetics indicates that cells of common ancestry show functional uniformity. No evidence was found that the proximity of the vascular tissue influenced development of photochemical function.

Page Thumbnails

  • Thumbnail: Page 
1083
    1083
  • Thumbnail: Page 
1084
    1084
  • Thumbnail: Page 
1085
    1085
  • Thumbnail: Page 
1086
    1086
  • Thumbnail: Page 
1087
    1087
  • Thumbnail: Page 
1088
    1088