Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Ethylene Biosynthesis-Inducing Xylanase: II. Purification and Physical Characterization of the Enzyme Produced by Trichoderma viride

Jeffrey F. D. Dean and J. D. Anderson
Plant Physiology
Vol. 95, No. 1 (Jan., 1991), pp. 316-323
Stable URL: http://www.jstor.org/stable/4273381
Page Count: 8
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Ethylene Biosynthesis-Inducing Xylanase: II. Purification and Physical Characterization of the Enzyme Produced by Trichoderma viride
Preview not available

Abstract

The ethylene biosynthesis-inducing endoxylanase (EIX) from xylan-induced cultures of the fungus, Trichoderma viride, was purified to near homogeneity and compared with the EIX isolated from Cellulysin. Both enzymes migrate as 9.2 kilodalton proteins during gel filtration chromatography under nondenaturing conditions, but the mature polypeptide migrates as a 22 kilodalton band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The amino acid composition of the 22 kilodalton polypeptide is enriched by Gly, Ser, Thr, Trp, and Tyr, but depleted in Ala, Glx, Leu, and Lys. Both proteins lack sulfur-containing amino acids. The protein is glycosylated, and inhibition of EIX synthesis by tunicamycin suggests that at least some of the sugar moieties are linked to asparagine residues. EIX appears to be synthesized initially as a 25 kilodalton precursor protein that is processed to 22 kilodalton during secretion.

Page Thumbnails

  • Thumbnail: Page 
316
    316
  • Thumbnail: Page 
317
    317
  • Thumbnail: Page 
318
    318
  • Thumbnail: Page 
319
    319
  • Thumbnail: Page 
320
    320
  • Thumbnail: Page 
321
    321
  • Thumbnail: Page 
322
    322
  • Thumbnail: Page 
323
    323