Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Dependency of Iron Reduction on Development of a Unique Root Morphology in Ficus benjamina L.

Claire-Lise Rosenfield, David W. Reed and Matthew W. Kent
Plant Physiology
Vol. 95, No. 4 (Apr., 1991), pp. 1120-1124
Stable URL: http://www.jstor.org/stable/4273514
Page Count: 5
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Dependency of Iron Reduction on Development of a Unique Root Morphology in Ficus benjamina L.
Preview not available

Abstract

The activity of the Fe3+ reductase of excised adventitious roots of Ficus benjamina L., grown in hydroponic culture without iron, was determined by a colorometric assay simplified by the use of a microplate reader. Reductase activity remained the same from pH 4.5 to 6.5 and decreased sharply above pH 6.5. Acetate buffer inhibited reduction. During early stages of root growth, excised roots did not exhibit Fe3+ reductase activity. After several weeks and extensive root system development, Fe3+ reduction still was not detectable in primary roots, but intermediate and high rates of reduction occurred in lateral and newly formed root clusters, respectively. Clustered roots only developed on plants grown at 0 or very low (<1 micromolar) iron. Microscopic examination revealed the root cluster to be composed of up to 30 lateral roots, usually less than 1 millimeter in diameter and 1 centimeter in length, that were completely covered with root hairs.

Page Thumbnails

  • Thumbnail: Page 
1120
    1120
  • Thumbnail: Page 
1121
    1121
  • Thumbnail: Page 
1122
    1122
  • Thumbnail: Page 
1123
    1123
  • Thumbnail: Page 
1124
    1124