Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Response of Photosynthesis and Cellular Antioxidants to Ozone in Populus Leaves

Ashima Sen Gupta, Ruth Grene Alscher and Delbert McCune
Plant Physiology
Vol. 96, No. 2 (Jun., 1991), pp. 650-655
Stable URL: http://www.jstor.org/stable/4273652
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Response of Photosynthesis and Cellular Antioxidants to Ozone in Populus Leaves
Preview not available

Abstract

Atmospheric ozone causes formation of various highly reactive intermediates (e.g. peroxyl and superoxide radicals, H2O2, etc.) in plant tissues. A plant's productivity in environments with ozone may be related to its ability to scavenge the free radicals formed. The effects of ozone on photosynthesis and some free radical scavengers were measured in the fifth emergent leaf of poplars. Clonal poplars (Populus deltoides × Populus cv caudina) were fumigated with 180 parts per billion ozone for 3 hours. Photosynthesis was measured before, during, and after fumigation. During the first 90 minutes of ozone exposure, photosynthetic rates were unaffected but glutathione levels and superoxide dismutase activity increased. After 90 minutes of ozone exposure, photosynthetic rates began to decline while glutathione and superoxide dismutase continued to increase. Total glutathione (reduced plus oxidized) increased in fumigated leaves throughout the exposure period. The ratio of GSH/GSSG also decreased from 12.8 to 1.2 in ozone exposed trees. Superoxide dismutase levels increased twofold in fumigated plants. After 4 hours of ozone exposure, the photosynthetic rate was approximately half that of controls while glutathione levels and superoxide dismutase activity remained above that of the controls. The elevated antioxidant levels were maintained 21 hours after ozone exposure while photosynthetic rates recovered to about 75% of that of controls. Electron transport and NADPH levels remained unaffected by the treatment. Hence, elevated antioxidant metabolism may protect the photosynthetic apparatus during exposure to ozone.

Page Thumbnails

  • Thumbnail: Page 
650
    650
  • Thumbnail: Page 
651
    651
  • Thumbnail: Page 
652
    652
  • Thumbnail: Page 
653
    653
  • Thumbnail: Page 
654
    654
  • Thumbnail: Page 
655
    655