Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Molecular Characterization of the Soybean Alcohol Dehydrogenase Gene Family Amplified in vitro by the Polymerase Chain Reaction

Kurt D. Newman and Tara T. VanToai
Plant Physiology
Vol. 100, No. 1 (Sep., 1992), pp. 489-495
Stable URL: http://www.jstor.org/stable/4274652
Page Count: 7
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Molecular Characterization of the Soybean Alcohol Dehydrogenase Gene Family Amplified in vitro by the Polymerase Chain Reaction
Preview not available

Abstract

Soybean (Glycine max) alcohol dehydrogenase (ADH) cDNAs were amplified in vitro from total RNA by the polymerase chain reaction (PCR). The amplification strategy involved first strand cDNA synthesis from anaerobic cotyledon total RNA using an 18-thymidine primer. The second strand cDNA primer was a conserved sequence near the 5′ end of known plant ADH transcripts. The PCR products were ligated into a plasmid vector and unique clones were isolated on the basis of size and restriction pattern. Sequence analysis revealed three distinct classes of soybean ADH cDNAs, all of which showed high homology to Adh genes from maize and peas. RNA blot hybridization analyses showed differential expression patterns for these genes. One gene, expressed constitutively in all seedling organs, was inducible by anaerobiosis, one gene was expressed only in anaerobic organs, and the third gene was expressed predominantly in anaerobic roots.

Page Thumbnails

  • Thumbnail: Page 
489
    489
  • Thumbnail: Page 
490
    490
  • Thumbnail: Page 
491
    491
  • Thumbnail: Page 
492
    492
  • Thumbnail: Page 
493
    493
  • Thumbnail: Page 
494
    494
  • Thumbnail: Page 
495
    495