Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Seasonal Acclimation of Stem Photosynthesis in Woody Legume Species from the Mojave and Sonoran Deserts of California

Erik T. Nilsen and M. Rasoul Sharifi
Plant Physiology
Vol. 105, No. 4 (Aug., 1994), pp. 1385-1391
Stable URL: http://www.jstor.org/stable/4275993
Page Count: 7
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Seasonal Acclimation of Stem Photosynthesis in Woody Legume Species from the Mojave and Sonoran Deserts of California
Preview not available

Abstract

Photosynthesis (Pn) was measured in stems of two desert legumes, Caesalpinia virgata at a low elevation site (118 m) in the Sonoran Desert and Senna armata at a higher elevation (950 m) in the Mojave Desert. The lower elevation site experienced higher spring and summer temperatures than the higher elevation site, but the air vapor pressure, irradiance, and rainfall patterns were similar. Mid-morning maximum stem Pn was highest in May for C. virgata (7.8 μmol m-2 s-1) and in July for S. armata (5.8 μmol m-2 s-1). The seasonal variation in maximum stem Pn was not associated with changes in bulk tissue water potential or chlorenchyma tissue nitrogen concentration. The main environmental regulators of seasonal stem Pn were temperature and leaf to air vapor pressure gradient. Light-response curves indicated no major differences in apparent quantum yield or light compensation point between the spring and summer, but light-saturated stem Pn at ambient temperature decreased for C. virgata between these seasons. The optimal temperature for stem Pn remained the same for both species between the spring and the summer. However, stem Pn of both species increased at all temperatures between the spring and summer. Potential stem Pn under optimal conditions and CO2-saturated stem Pn increased for both species between spring and summer. The increase in stem Pn potential allowed these species to maintain stem Pn during the summer even though stem Pn responses to temperature and vapor pressure did not acclimate to seasonal climatic conditions.

Page Thumbnails

  • Thumbnail: Page 
1385
    1385
  • Thumbnail: Page 
1386
    1386
  • Thumbnail: Page 
1387
    1387
  • Thumbnail: Page 
1388
    1388
  • Thumbnail: Page 
1389
    1389
  • Thumbnail: Page 
1390
    1390
  • Thumbnail: Page 
1391
    1391