Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Some Quantitative Relationships between Leaf Area Index and Canopy Nitrogen Content and Distribution

XINYOU YIN, EGBERT A. LANTINGA, AD H. C. M. SCHAPENDONK and XUHUA ZHONG
Annals of Botany
Vol. 91, No. 7 (June 2003), pp. 893-903
Published by: Oxford University Press
Stable URL: http://www.jstor.org/stable/42796327
Page Count: 11
  • Download ($42.00)
  • Cite this Item
Some Quantitative Relationships between Leaf Area Index and Canopy Nitrogen Content and Distribution
Preview not available

Abstract

In a previous study (Yin et al. 2000. Annals of Botany 85: 579-585), a generic logarithmic equation for leaf area index (L) in relation to canopy nitrogen content (N) was developed: L = (1/ktn) ln (1 + ktn N/nb). The equation has two parameters: the minimum leaf nitrogen required to support photosynthesis (nb), and the leaf nitrogen extinction coefficient (ktn). Relative to nb, there is less information in the literature regarding the variation of ktn. We therefore derived an equation to theoretically estimate the value of ktn. The predicted profile of leaf nitrogen in a canopy using this theoretically estimated value of ktn is slightly more uniform than the profile predicted by the optimum nitrogen distribution that maximizes canopy photosynthesis. Relative to the optimum profile, the predicted profile is somewhat closer to the observed one. Based on the L-N logarithmic equation and the theoretical ktn value, we further quantified early leaf area development of a canopy in relation to nitrogen using simulation analysis. In general, there are two types of relations between L and N, which hold for canopies at different developmental phases. For a fully developed canopy where the lowest leaves are senescing due to nitrogen shortage, the relationship between L and N is described well by the logarithmic model above. For a young, unclosed canopy (i.e. L < 1.0), the relation between L and N is nearly linear. This linearity is virtually the special case of the logarithmic model when applied to a young canopy where its total nitrogen content approaches zero and the amount of nitrogen in its lowest leaves is well above nb. The expected patterns of the L-N relationship are discussed for the phase of transition from young to fully developed canopies.

Page Thumbnails

  • Thumbnail: Page 
[893]
    [893]
  • Thumbnail: Page 
894
    894
  • Thumbnail: Page 
895
    895
  • Thumbnail: Page 
896
    896
  • Thumbnail: Page 
897
    897
  • Thumbnail: Page 
898
    898
  • Thumbnail: Page 
899
    899
  • Thumbnail: Page 
900
    900
  • Thumbnail: Page 
901
    901
  • Thumbnail: Page 
902
    902
  • Thumbnail: Page 
903
    903