Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Lateral Root Initiation in Arabidopsis: Developmental Window, Spatial Patterning, Density and Predictability

J. G. DUBROVSKY, G. A. GAMBETTA, A. HERNÁNDEZ-BARRERA, S. SHISHKOVA and I. GONZÁLEZ
Annals of Botany
Vol. 97, No. 5, Highlight on Root Systems (May 2006), pp. 903-915
Published by: Oxford University Press
Stable URL: http://www.jstor.org/stable/42796453
Page Count: 13
  • Download ($42.00)
  • Cite this Item
Lateral Root Initiation in Arabidopsis: Developmental Window, Spatial Patterning, Density and Predictability
Preview not available

Abstract

• Background and Aims The basic regulatory mechanisms that control lateral root (LR) initiation are still poorly understood. An attempt is made to characterize the pattern and timing of LR initiation, to define a developmental window in which LR initiation takes place and to address the question of whether LR initiation is predictable. • Methods The spatial patterning of LRs and LR primordia (LRPs) on cleared root preparations were characterized. New measures of LR and LRP densities (number of LRs and/or LRPs divided by the length of the root portions where they are present) were introduced and illustrate the shortcomings of the more customarily used measure through a comparative analysis of the mutant aux 1-7. The enhancer trap line J0121 was used to monitor LR initiation in time-lapse experiments and a plasmolysis-based method was developed to determine the number of pericycle cells between successive LRPs. • Key Results LRP initiation occurred strictly acropetally and no de novo initiation events were found between already developed LRs or LRPs. However, LRPs did not become LRs in a similar pattern. The longitudinal spacing of lateral organs was variable and the distance between lateral organs was proportional to the number of cells and the time between initiations of successive LRPs. There was a strong tendency towards alternation in LR initiation between the two pericycle cell files adjacent to the protoxylem poles. LR density increased with time due to the emergence of slowly developing LRPs and appears to be unique for individual Arabidopsis accessions. • Conclusions. In Arabidopsis there is a narrow developmental window for LR initiation, and no specific cell-count or distance-measuring mechanisms have been found that determine the site of successive initiation events. Nevertheless, the branching density and lateral organ density (density of LRs and LRPs) are accession-specific, and based on the latter density the average distance between successive LRs can be predicted.

Page Thumbnails

  • Thumbnail: Page 
[903]
    [903]
  • Thumbnail: Page 
904
    904
  • Thumbnail: Page 
905
    905
  • Thumbnail: Page 
906
    906
  • Thumbnail: Page 
907
    907
  • Thumbnail: Page 
908
    908
  • Thumbnail: Page 
909
    909
  • Thumbnail: Page 
910
    910
  • Thumbnail: Page 
911
    911
  • Thumbnail: Page 
912
    912
  • Thumbnail: Page 
913
    913
  • Thumbnail: Page 
914
    914
  • Thumbnail: Page 
915
    915