Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Response of Arabidopsis to Iron Deficiency Stress as Revealed by Microarray Analysis

Oliver Thimm, Bernd Essigmann, Sebastian Kloska, Thomas Altmann and Thomas J. Buckhout
Plant Physiology
Vol. 127, No. 3 (Nov., 2001), pp. 1030-1043
Stable URL: http://www.jstor.org/stable/4280162
Page Count: 14
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Response of Arabidopsis to Iron Deficiency Stress as Revealed by Microarray Analysis
Preview not available

Abstract

Gene expression in response to Fe deficiency was analyzed in Arabidopsis roots and shoots through the use of a cDNA collection representing at least 6,000 individual gene sequences. Arabidopsis seedlings were grown 1, 3, and 7 d in the absence of Fe, and gene expression in roots and shoots was investigated. Following confirmation of data and normalization methods, expression of several sequences encoding enzymes known to be affected by Fe deficiency was investigated by microarray analysis. Confirmation of literature reports, particularly for changes in enzyme activity, was not always possible, but changes in gene expression could be confirmed. An expression analysis of genes in glycolysis, the tricarboxylic acid cycle, and oxidative pentose phosphate pathway revealed an induction of several enzymes within 3 d of Fe-deficient growth, indicating an increase in respiration in response to Fe deficiency. In roots, transcription of sequences corresponding to enzymes of anaerobic respiration was also induced, whereas in shoots, the induction of several genes in gluconeogenesis, starch degradation, and phloem loading was observed. Thus, it seemed likely that the energy demand in roots required for the Fe deficiency response exceeded the capacity of oxidative phosphorylation, and an increase in carbon import and anaerobic respiration were required to maintain metabolism.

Page Thumbnails

  • Thumbnail: Page 
1030
    1030
  • Thumbnail: Page 
1031
    1031
  • Thumbnail: Page 
1032
    1032
  • Thumbnail: Page 
1033
    1033
  • Thumbnail: Page 
1034
    1034
  • Thumbnail: Page 
1035
    1035
  • Thumbnail: Page 
1036
    1036
  • Thumbnail: Page 
1037
    1037
  • Thumbnail: Page 
1038
    1038
  • Thumbnail: Page 
1039
    1039
  • Thumbnail: Page 
1040
    1040
  • Thumbnail: Page 
1041
    1041
  • Thumbnail: Page 
1042
    1042
  • Thumbnail: Page 
1043
    1043