Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

BWMK1, a Rice Mitogen-Activated Protein Kinase, Locates in the Nucleus and Mediates Pathogenesis-Related Gene Expression by Activation of a Transcription Factor

Yong Hwa Cheong, Byeong Cheol Moon, Jong Kyong Kim, Cha Young Kim, Min Chul Kim, Ihn Hyoung Kim, Chan Young Park, Jong Cheol Kim, Byung Ouk Park, Seong Cheol Koo, Hae Won Yoon, Woo Sik Chung, Chae Oh Lim, Sang Yeol Lee and Moo Je Cho
Plant Physiology
Vol. 132, No. 4, Focus Issue: Stress under the Sun: Spotlight on Ultraviolet-B Responses (Aug., 2003), pp. 1961-1972
Stable URL: http://www.jstor.org/stable/4281275
Page Count: 12
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
BWMK1, a Rice Mitogen-Activated Protein Kinase, Locates in the Nucleus and Mediates Pathogenesis-Related Gene Expression by Activation of a Transcription Factor
Preview not available

Abstract

Mitogen-activated protein kinase (MAPK) cascades are known to transduce plant defense signals, but the downstream components of the MAPK have as yet not been elucidated. Here, we report an MAPK from rice (Oryza sativa), BWMK1, and a transcription factor, OsEREBP1, phosphorylated by the kinase. The MAPK carries a TDY phosphorylation motif instead of the more common TEY motif in its kinase domain and has an unusually extended C-terminal domain that is essential to its kinase activity and translocation to the nucleus. The MAPK phosphorylates OsEREBP1 that binds to the GCC box element (AGCCGCC) of the several basic pathogenesis-related gene promoters, which in turn enhances DNA-binding activity of the factor to the cis element in vitro. Transient co-expression of the BWMK1 and OsEREBP1 in Arabidopsis protoplasts elevates the expression of the β-glucuronidase reporter gene driven by the GCC box element. Furthermore, transgenic tobacco (Nicotiana tabacum) plants overexpressing BWMK1 expressed many pathogenesis-related genes at higher levels than wild-type plants with an enhanced resistance to pathogens. These findings suggest that MAPKs contribute to plant defense signal transduction by phosphorylating one or more transcription factors.

Page Thumbnails

  • Thumbnail: Page 
1961
    1961
  • Thumbnail: Page 
1962
    1962
  • Thumbnail: Page 
1963
    1963
  • Thumbnail: Page 
1964
    1964
  • Thumbnail: Page 
1965
    1965
  • Thumbnail: Page 
1966
    1966
  • Thumbnail: Page 
1967
    1967
  • Thumbnail: Page 
1968
    1968
  • Thumbnail: Page 
1969
    1969
  • Thumbnail: Page 
1970
    1970
  • Thumbnail: Page 
1971
    1971
  • Thumbnail: Page 
1972
    1972