Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Xylem Wall Collapse in Water-Stressed Pine Needles

Hervé Cochard, Fabienne Froux, Stefan Mayr and Catherine Coutand
Plant Physiology
Vol. 134, No. 1 (Jan., 2004), pp. 401-408
Stable URL: http://www.jstor.org/stable/4281567
Page Count: 8
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Xylem Wall Collapse in Water-Stressed Pine Needles
Preview not available

Abstract

Wall reinforcement in xylem conduits is thought to prevent wall implosion by negative pressures, but direct observations of xylem geometry during water stress are still largely lacking. In this study, we have analyzed the changes in xylem geometry during water stress in needles of four pine species (Pinus spp.). Dehydrated needles were frozen with liquid nitrogen, and xylem cross sections were observed, still frozen, with a cryo-scanning electron microscope and an epifluorescent microscope. Decrease in xylem pressure during drought provoked a progressive collapse of tracheids below a specific threshold pressure ($P_{\text{collapse}}$) that correlates with the onset of cavitation in the stems. $P_{\text{collapse}}$ was more negative for species with smaller tracheid diameter and thicker walls, suggesting a tradeoff between xylem efficiency, xylem vulnerability to collapse, and the cost of wall stiffening. Upon severe dehydration, tracheid walls were completely collapsed, but lumens still appeared filled with sap. When dehydration proceeded further, tracheids embolized and walls relaxed. Wall collapse in dehydrated needles was rapidly reversed upon rehydration. We discuss the implications of this novel hydraulic trait on the xylem function and on the understanding of pine water relations.

Page Thumbnails

  • Thumbnail: Page 
401
    401
  • Thumbnail: Page 
402
    402
  • Thumbnail: Page 
403
    403
  • Thumbnail: Page 
404
    404
  • Thumbnail: Page 
405
    405
  • Thumbnail: Page 
406
    406
  • Thumbnail: Page 
407
    407
  • Thumbnail: Page 
408
    408