Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

DNA Methylation as a Key Process in Regulation of Organogenic Totipotency and Plant Neoplastic Progression?

Pascal Lambé, Hity Schié, Nkung Mutambel, Jean-Gabriel Fouché, Roger Deltour, Jean-Michel Foidart and Thomas Gaspar
In Vitro Cellular & Developmental Biology. Plant
Vol. 33, No. 3 (Jul. - Sep., 1997), pp. 155-162
Stable URL: http://www.jstor.org/stable/4293116
Page Count: 8
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
DNA Methylation as a Key Process in Regulation of Organogenic Totipotency and Plant Neoplastic Progression?
Preview not available

Abstract

Progressive loss of organogenic totipotency appears to be a common event in long-term plant tissue culture. This loss of totipotency, which has been proposed to be a typical trait of plant neoplastic progression, is compared to some mechanisms that occur during the establishment of animal differentiation-resistant cancer lines in vitro. Evidence is presented that alteration in DNA methylation patterns and expression of genes occur during long-term callus culture. An effect of the auxin, 2,4-dichlorophenoxyacetic acid, in the progressive methylation, is moreover suggested. Methylation of genes relevant to cell differentiation and progressive elimination of cells capable of differentiation is proposed as being responsible for this progressive loss of organogenic potential. Finally, the epigenetic alteration (DNA methylation) that occurs during prolonged periods of culture may induce other irreversible genetic alterations that ultimately make the loss of totipotency irreversible.

Page Thumbnails

  • Thumbnail: Page 
155
    155
  • Thumbnail: Page 
156
    156
  • Thumbnail: Page 
157
    157
  • Thumbnail: Page 
158
    158
  • Thumbnail: Page 
159
    159
  • Thumbnail: Page 
160
    160
  • Thumbnail: Page 
161
    161
  • Thumbnail: Page 
162
    162