Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Regeneration of Transgenic Picea glauca, P. mariana, and P. abies after Cocultivation of Embryogenic Tissue with Agrobacterium tumefaciens

Krystyna Klimaszewska, Denis Lachance, Gervais Pelletier, Marie-Anne Lelu and Armand Séguin
In Vitro Cellular & Developmental Biology. Plant
Vol. 37, No. 6 (Nov. - Dec., 2001), pp. 748-755
Stable URL: http://www.jstor.org/stable/4293542
Page Count: 8
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Regeneration of Transgenic Picea glauca, P. mariana, and P. abies after Cocultivation of Embryogenic Tissue with Agrobacterium tumefaciens
Preview not available

Abstract

Transgenic plants of three Picea species were produced after coculture of embryogenic tissue with the disarmed strain of Agrobacterium tumefaciens C58/pMP90/pBIV10 and selection on medium containing kanamycin. In addition to the nptII selectable gene (conferring resistance to kanamycin), the vector carried the uidA (β-glucuronidase) marker gene. Transformation frequencies were dependent on the species, genotype, and post-cocultivation procedure. Of the three species tested, P. mariana was transformed at the highest frequency, followed by P. glauca and P. abies. The transgenic state of the embryogenic tissue was initially confirmed by histochemical β-glucuronidase (GUS) assay followed by Southern hybridization. One to over five copies of T-DNA were detected in various transgenic lines analyzed. Transgenic plants were regenerated for all species using modified protocols for maturation and germination of somatic embryos.

Page Thumbnails

  • Thumbnail: Page 
748
    748
  • Thumbnail: Page 
749
    749
  • Thumbnail: Page 
750
    750
  • Thumbnail: Page 
751
    751
  • Thumbnail: Page 
752
    752
  • Thumbnail: Page 
753
    753
  • Thumbnail: Page 
754
    754
  • Thumbnail: Page 
755
    755