Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

An Enclosed-Chamber Labeling System for the Safe $^{14}C-Enrichment$ of Phytochemicals in Plant Cell Suspension Cultures

Michael A. Grusak, Randy B. Rogers, Gad G. Yousef, John W. Erdman Jr. and Mary Ann Lila
In Vitro Cellular & Developmental Biology. Plant
Vol. 40, No. 1 (Jan. - Feb., 2004), pp. 80-85
Stable URL: http://www.jstor.org/stable/4293698
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
An Enclosed-Chamber Labeling System for the Safe $^{14}C-Enrichment$ of Phytochemicals in Plant Cell Suspension Cultures
Preview not available

Abstract

Various plant secondary products have been implicated in the promotion of good health or the prevention of disease in humans, but little is known about the way they are absorbed in the gut, or in which tissues they are deposited throughout the body. While these issues could be studied if the phytochemicals were isotopically labeled, generating labeled molecules often is problematic because many compounds of interest can be synthesized only in planta at present. In order to generate 14C-labeled phytochemicals of high radioactive enrichment, we developed an enclosed-chamber labeling system in which cell suspension cultures can be safely and efficiently grown when supplied with $^{14}-enriched$ precursors. The system is designed to hold culture flasks within a clear, polyacrylic compartment that is affixed to the top of a rotary shaker. The flow-through gas exchange nature of the system allows for O2 replenishment and complete capture of respired 14CO2 throughout the entire period of cell culture. Air is circulated internally with the aid of a small fan, and chamber air temperature is monitored continuously with an internal temperature probe and data logger. Production runs of 12-14 d with Vaccinium pahalae (ohelo berry) and Vitis vinifera (grape) suspension cultures, using $\lbrack^{14}C \rbrack sucrose$ as the carbon source, demonstrated a 20-23% efficiency of 14C incorporation into the flavonoid-rich fractions. Further studies with ohelo cell cultures showed that flavonoids were produced with either sucrose or glucose as the carbohydrate source, although flavonoid productivity (measured as anthocyanins) was higher with sucrose. This comprehensive chamber system should have broad applicability with numerous cell types and can be used to generate a wide array of labeled phytochemicals.

Page Thumbnails

  • Thumbnail: Page 
80
    80
  • Thumbnail: Page 
81
    81
  • Thumbnail: Page 
82
    82
  • Thumbnail: Page 
83
    83
  • Thumbnail: Page 
84
    84
  • Thumbnail: Page 
85
    85