Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Isolation and Characterization of a Novel Human Bladder Cancer Cell Line: BK10

Kathryn M. Roberson, Donna R. Yancey, Hesed Padilla-Nash, Darryl W. Edwards, William Nash, Sharone Jacobs, George M. Padilla, William A. Larchian and Cary N. Robertson
In Vitro Cellular & Developmental Biology. Animal
Vol. 34, No. 7 (Jul. - Aug., 1998), pp. 537-544
Stable URL: http://www.jstor.org/stable/4294816
Page Count: 8
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Isolation and Characterization of a Novel Human Bladder Cancer Cell Line: BK10
Preview not available

Abstract

Molecular studies of bladder carcinomas have aided in determining causative genetic events and the prognosis of cancers endowed with certain abnormalities. In vitro bladder cancer characterization of key cytogenetic alterations is useful for study of molecular changes that may promote oncogenic events. In our laboratory, a novel human bladder cancer cell line, BK10, has been established in vitro and passaged for more than 20 mo. This new bladder cancer cell line (BK10) was derived from bladder tissue containing grade III-IV/IV transitional cell carcinoma. Bladder cancer tissue was obtained at the time of radical cystoprostatectomy extirpation. Cell cultures derived from this surgical sample exhibited an epithelial morphology and expressed epithelial cytokeratins. Immunostains of BK10 were negative for prostate specific antigen (PSA), fibronectin, smooth muscle actin alpha, and desmin. Karyotypic analysis revealed an aneuploid chromosomal content <4n> with many numerical and structural abnormalities previously linked to bladder oncogenesis. Translocations occurred in chromosomes 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, X and Y. G-banding analysis revealed rearrangements involving chromosomes 9q and 17p, and the location of the ab11 oncogene and the p53 gene, respectively. The availability of this bladder cancer cell line will provide a useful tool for the further study of bladder carcinoma oncogenesis and gene therapy.

Page Thumbnails

  • Thumbnail: Page 
537
    537
  • Thumbnail: Page 
538
    538
  • Thumbnail: Page 
539
    539
  • Thumbnail: Page 
540
    540
  • Thumbnail: Page 
541
    541
  • Thumbnail: Page 
542
    542
  • Thumbnail: Page 
543
    543
  • Thumbnail: Page 
544
    544