Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Functional Evaluation of Nerve-Skeletal Muscle Constructs Engineered In vitro

Lisa M. Larkin, Jack H. Van Der Meulen, Robert G. Dennis and Jeffrey B. Kennedy
In Vitro Cellular & Developmental Biology. Animal
Vol. 42, No. 3/4 (Mar. - Apr., 2006), pp. 75-82
Stable URL: http://www.jstor.org/stable/4295668
Page Count: 8
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Functional Evaluation of Nerve-Skeletal Muscle Constructs Engineered In vitro
Preview not available

Abstract

Previously, we have engineered three-dimensional (3-D) skeletal muscle constructs that generate force and display a myosin heavy-chain (MHC) composition of fetal muscle. The purpose of this study was to evaluate the functional characteristics of 3-D skeletal muscle constructs cocultured with fetal nerve explants. We hypothesized that coculture of muscle constructs with neural cells would produce constructs with increased force and adult MHC isoforms. Following introduction of embryonic spinal cord explants to a layer of confluent muscle cells, the neural tissue integrated with the cultured muscle cells to form 3-D muscle constructs with extensions. Immunohistochemical labeling indicated that the extensions were neural tissue and that the junctions between the nerve extensions and the muscle constructs contained clusters of acetylcholine receptors. Compared to muscles cultured without nerve explants, constructs formed from nerve-muscle coculture showed spontaneous contractions with an increase in frequency and force. Upon field stimulation, both twitch (2-fold) and tetanus (1.7-fold) were greater in the nerve-muscle coculture system. Contractions could be elicited by electrically stimulating the neural extensions, although smaller forces are produced than with field stimulation. Severing the extension eliminated the response to electrical stimulation, excluding field stimulation as a contributing factor. Nerve-muscle constructs showed a tendency to have higher contents of adult and lower contents of fetal MHC isoforms, but the differences were not significant. In conclusion, we have successfully engineered a 3-D nerve-muscle construct that displays functional neuromuscular junctions and can be electrically stimulated to contract via the neural extensions projecting from the construct.

Page Thumbnails

  • Thumbnail: Page 
75
    75
  • Thumbnail: Page 
76
    76
  • Thumbnail: Page 
77
    77
  • Thumbnail: Page 
78
    78
  • Thumbnail: Page 
79
    79
  • Thumbnail: Page 
80
    80
  • Thumbnail: Page 
81
    81
  • Thumbnail: Page 
82
    82