Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

The Ambiguity of Quantifiers

Francesco Paoli
Philosophical Studies: An International Journal for Philosophy in the Analytic Tradition
Vol. 124, No. 3 (Jun., 2005), pp. 313-330
Published by: Springer
Stable URL: http://www.jstor.org/stable/4321612
Page Count: 18
  • Download ($43.95)
  • Cite this Item
The Ambiguity of Quantifiers
Preview not available

Abstract

In the tradition of substructural logics, it has been claimed for a long time that conjunction and inclusive disjunction are ambiguous: we should, in fact, distinguish between 'lattice' connectives (also called additive or extensional) and 'group' connectives (also called multiplicative or intensional). We argue that an analogous ambiguity affects the quantifiers. Moreover, we show how such a perspective could yield solutions for two well-known logical puzzles: McGee's counterexample to modus ponens and the lottery paradox.

Page Thumbnails

  • Thumbnail: Page 
[313]
    [313]
  • Thumbnail: Page 
314
    314
  • Thumbnail: Page 
315
    315
  • Thumbnail: Page 
316
    316
  • Thumbnail: Page 
317
    317
  • Thumbnail: Page 
318
    318
  • Thumbnail: Page 
319
    319
  • Thumbnail: Page 
320
    320
  • Thumbnail: Page 
321
    321
  • Thumbnail: Page 
322
    322
  • Thumbnail: Page 
323
    323
  • Thumbnail: Page 
324
    324
  • Thumbnail: Page 
325
    325
  • Thumbnail: Page 
326
    326
  • Thumbnail: Page 
327
    327
  • Thumbnail: Page 
328
    328
  • Thumbnail: Page 
329
    329
  • Thumbnail: Page 
330
    330