Access

You are not currently logged in.

Access JSTOR through your library or other institution:

login

Log in through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Journal Article

Robertsonian Fusion and Centric Fission in Karyotype Evolution of Higher Plants

Keith Jones
Botanical Review
Vol. 64, No. 3 (Jul. - Sep., 1998), pp. 273-289
Published by: Springer on behalf of New York Botanical Garden Press
Stable URL: http://www.jstor.org/stable/4354325
Page Count: 17

You can always find the topics here!

Topics: Chromosomes, Evolution, Karyotype, Species, Biological taxonomies, Diploidy, Ploidies, Plants, Genera, Cytology
Were these topics helpful?
See somethings inaccurate? Let us know!

Select the topics that are inaccurate.

Cancel
  • Read Online (Free)
  • Subscribe ($19.50)
  • Add to My Lists
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Robertsonian Fusion and Centric Fission in Karyotype Evolution of Higher Plants
Preview not available

Abstract

Robertsonian fusion and centric fission are uniquely detectable in comparative studies of karyotype patterns. They are the most important types of karyotype change in animals but seem to be relatively uncommon in higher plants. Both modify intra- and interchromosomal recombination and linkage relationships and consequently patterns of genetic variation. When differentiating populations or species they can produce postmating barriers to gene flow. The number of reported cases of fusion or fission in higher plants has increased over the years but remains low, and most of these are casual comparisons of karyotypes without any follow-up investigation. This review focuses on more adequate studies made in a few groups. Studies in the Tradescantieae produce the strongest evidence for fusion as a type of ortho-selection in the subfamily. Some species of Lycoris are also considered to have evolved their karyotypes in that way. Some genera of slipper orchids and the cycad genus Zamia have populations where atypical chromosome number increase can be attributed to fission probably as a result of stressful influences. It is suggested that fusion may have been involved in the evolution of many stable karyotypes and that fission is generally a secondary destabilizing mechanism which may lead to refusion in the long term. Their proven incidence remains making it unwise to suggest that they have been major influences in karyotype evolution in higher plants.

Page Thumbnails

  • Thumbnail: Page 
273
    273
  • Thumbnail: Page 
274
    274
  • Thumbnail: Page 
275
    275
  • Thumbnail: Page 
276
    276
  • Thumbnail: Page 
277
    277
  • Thumbnail: Page 
278
    278
  • Thumbnail: Page 
279
    279
  • Thumbnail: Page 
280
    280
  • Thumbnail: Page 
281
    281
  • Thumbnail: Page 
282
    282
  • Thumbnail: Page 
283
    283
  • Thumbnail: Page 
284
    284
  • Thumbnail: Page 
285
    285
  • Thumbnail: Page 
286
    286
  • Thumbnail: Page 
287
    287
  • Thumbnail: Page 
288
    288
  • Thumbnail: Page 
289
    289