Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Entropy Quotients and Correct Digits in Number-Theoretic Expansions

Wieb Bosma, Karma Dajani and Cor Kraaikamp
Lecture Notes-Monograph Series
Vol. 48, Dynamics & Stochastics (2006), pp. 176-188
Stable URL: http://www.jstor.org/stable/4356371
Page Count: 13
  • Read Online (Free)
  • Download ($19.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Entropy Quotients and Correct Digits in Number-Theoretic Expansions
Preview not available

Abstract

Expansions that furnish increasingly good approximations to real numbers are usually related to dynamical systems. Although comparing dynamical systems seems difficult in general, Lochs was able in 1964 to relate the relative speed of approximation of decimal and regular continued fraction expansions (almost everywhere) to the quotient of the entropies of their dynamical systems. He used detailed knowledge of the continued fraction operator. In 2001, a generalization of Lochs' result was given by Dajani and Fieldsteel in [7], describing the rate at which the digits of one number-theoretic expansion determine those of another. Their proofs are based on covering arguments and not on the dynamics of specific maps. In this paper we give a dynamical proof for certain classes of transformations, and we describe explicitly the distribution of the number of digits determined when comparing two expansions in integer bases. Finally, using this generalization of Lochs' result, we estimate the unknown entropy of certain number theoretic expansions by comparing the speed of convergence with that of an expansion with known entropy.

Page Thumbnails

  • Thumbnail: Page 
176
    176
  • Thumbnail: Page 
177
    177
  • Thumbnail: Page 
178
    178
  • Thumbnail: Page 
179
    179
  • Thumbnail: Page 
180
    180
  • Thumbnail: Page 
181
    181
  • Thumbnail: Page 
182
    182
  • Thumbnail: Page 
183
    183
  • Thumbnail: Page 
184
    184
  • Thumbnail: Page 
185
    185
  • Thumbnail: Page 
186
    186
  • Thumbnail: Page 
187
    187
  • Thumbnail: Page 
188
    188