Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

FINITE-AMPLITUDE SURFACE WAVES IN ELECTROHYDRODYNAMICS

RAMA KANT, R. K. JINDIA and S. K. MALIK
Quarterly of Applied Mathematics
Vol. 39, No. 1 (April 1981), pp. 23-32
Published by: Brown University
Stable URL: http://www.jstor.org/stable/43637071
Page Count: 10
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
FINITE-AMPLITUDE SURFACE WAVES IN ELECTROHYDRODYNAMICS
Preview not available

Abstract

The stability of weakly nonlinear waves on the surface of a fluid layer in the presence of an applied electric field is investigated by using the derivative expansion method. A nonlinear Schrödinger equation for the complex amplitude of quasi-monochromatic traveling wave is derived. The wave train of constant amplitude is unstable against modulation. The equation governing the amplitude modulation of the standing wave is also obtained which yields the nonlinear cut-off wave number.

Page Thumbnails

  • Thumbnail: Page 
23
    23
  • Thumbnail: Page 
24
    24
  • Thumbnail: Page 
25
    25
  • Thumbnail: Page 
26
    26
  • Thumbnail: Page 
27
    27
  • Thumbnail: Page 
28
    28
  • Thumbnail: Page 
29
    29
  • Thumbnail: Page 
30
    30
  • Thumbnail: Page 
31
    31
  • Thumbnail: Page 
32
    32