Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

The Helium Paradoxes

Don L. Anderson
Proceedings of the National Academy of Sciences of the United States of America
Vol. 95, No. 9 (Apr. 28, 1998), pp. 4822-4827
Stable URL: http://www.jstor.org/stable/44624
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
The Helium Paradoxes
Preview not available

Abstract

The ratio 3He/4He (R) plays a central role in models of mantle evolution that propose an undegassed lower mantle, rich in the primordial isotope 3He. A large primordial volatile-rich reservoir, a feature of recent models, is inconsistent with high-temperature accretion and with estimates of crustal and bulk Earth chemistry. High R can alternatively reflect high integrated 3He/(U+Th) ratios or low 4He abundances, as expected in refractory portions of the upper mantle. I show that high R materials are gas-poor and are deficient in radiogenic 4He compared with midocean ridge basalts. The seemingly primitive (i.e., high R) signatures in ``hotspot'' magmas may be secondary, derived from CO2-rich gases, or residual peridotite, a result of differential partitioning of U and He into magmas. A shallow and low 3He source explains the spatial variability and the temporal trends of R in ocean islands and is consistent with a volatile-poor planet. A shallow origin for the ``primitive'' He signature in ocean island basalts, such as at Loihi, reconciles the paradoxical juxtaposition of crustal, seawater, and atmospheric signatures with inferred ``primitive'' characteristics. High 238U/204Pb components in ocean island basalts are generally attributed to recycled altered oceanic crust. The low 238U/3He component may be in the associated depleted refractory mantle. High 3He/4He ratios are due to low 4He, not excess 3He, and do not imply or require a deep or primordial or undegassed reservoir. 40Ar in the atmosphere also argues against such models.

Page Thumbnails

  • Thumbnail: Page 
4822
    4822
  • Thumbnail: Page 
4823
    4823
  • Thumbnail: Page 
4824
    4824
  • Thumbnail: Page 
4825
    4825
  • Thumbnail: Page 
4826
    4826
  • Thumbnail: Page 
4827
    4827