Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Basal Clades and Molecular Systematics of Heteromyid Rodents

John C. Hafner, Jessica E. Light, David J. Hafner, Mark S. Hafner, Emily Reddington, Duke S. Rogers and Brett R. Riddle
Journal of Mammalogy
Vol. 88, No. 5 (Oct., 2007), pp. 1129-1145
Stable URL: http://www.jstor.org/stable/4498763
Page Count: 17
  • Read Online (Free)
  • Download ($42.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Basal Clades and Molecular Systematics of Heteromyid Rodents
Preview not available

Abstract

The New World rodent family Heteromyidae shows a marvelous array of ecomorphological types, from bipedal, arid-adapted forms to scansorial, tropical-adapted forms. Although recent studies have resolved most of the phylogenetic relationships among heteromyids at the shallower taxonomic levels, fundamental questions at the deeper taxonomic levels remain unresolved. This study relies on DNA sequence information from 3 relatively slowly evolving mitochondrial genes, cytochrome c oxidase subunit I, 12S, and 16S, to examine basal patterns of phylogenesis in the Heteromyidae. Because slowly evolving mitochondrial genes evolve and coalesce more rapidly than most nuclear genes, they may be superior to nuclear genes for resolving short, basal branches. Our molecular data (2,381 base pairs for the 3-gene data set) affirm the monophyly of the family and resolve the major basal clades in the family. Alternative phylogenetic hypotheses of subfamilial relationships are examined statistically and the Perognathinae and Heteromyinae are found to represent sister clades relative to the Dipodomyinae. The 3 traditional subfamilial groupings are supported; the controversial placement of Microdipodops as a sister clade to Dipodomys in the Dipodomyinae is affirmed, Perognathus and Chaetodipus are distinct sister clades within the Perognathinae, and species of Liomys and Heteromys form the resolved clade Heteromyinae. However, Liomys is found to be paraphyletic relative to Heteromys and, given that this finding corroborates earlier studies, we present a formal taxonomy of Heteromys wherein we place Liomys in synonymy. Semiparametric and parametric methods are used to estimate divergence times from our molecular data and a chronogram of the Heteromyidae, calibrated by the oldest known fossils of Dipodomys and Perognathus, is presented. Our time estimates reveal subfamilial differentiation in the early Miocene (22.3-21.8 million years ago) and pose testable times of divergence for the basal heteromyid nodes. With the basal heteromyid clades resolved and cladogenic events positioned in a time framework, we review the major geological and paleoecological events of the Oligocene and Miocene associated with the early historical biogeography of the family.

Page Thumbnails

  • Thumbnail: Page 
1129
    1129
  • Thumbnail: Page 
1130
    1130
  • Thumbnail: Page 
1131
    1131
  • Thumbnail: Page 
1132
    1132
  • Thumbnail: Page 
1133
    1133
  • Thumbnail: Page 
1134
    1134
  • Thumbnail: Page 
1135
    1135
  • Thumbnail: Page 
1136
    1136
  • Thumbnail: Page 
1137
    1137
  • Thumbnail: Page 
1138
    1138
  • Thumbnail: Page 
1139
    1139
  • Thumbnail: Page 
1140
    1140
  • Thumbnail: Page 
1141
    1141
  • Thumbnail: Page 
1142
    1142
  • Thumbnail: Page 
1143
    1143
  • Thumbnail: Page 
1144
    1144
  • Thumbnail: Page 
1145
    1145