Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Geographical Ecology of Paraguayan Bats: Spatial Integration and Metacommunity Structure of Interacting Assemblages

Richard D. Stevens, Celia López-González and Steven J. Presley
Journal of Animal Ecology
Vol. 76, No. 6 (Nov., 2007), pp. 1086-1093
Stable URL: http://www.jstor.org/stable/4539220
Page Count: 8
  • Read Online (Free)
  • Download ($18.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Geographical Ecology of Paraguayan Bats: Spatial Integration and Metacommunity Structure of Interacting Assemblages
Preview not available

Abstract

1. We examined the relative contributions of regional spatial characteristics and local environmental conditions in determining Paraguayan bat species composition. 2. We used a suite of full and partial redundancy analyses to estimate four additive partitions of variance in bat species composition: (a) unexplained variation, (b) that explained purely by spatial characteristics, (c) that explained purely by local environmental conditions and (d) that explained jointly by space and environment. The spatial component to bat species composition was greater than the environmental component and both pure spatial and pure environmental characteristics accounted for significant amounts of variation in bat species composition. 3. Results from variance decomposition suggest that the mass effects model describes metacommunity structure of Paraguayan bats better than species sorting or neutral models. Such mass effects may potentially be general for bats and could explain the inability of purely local factors to fully account for bat community organization. Mass effects also have substantial conservation implications because rescue effects may enhance the persistence of mobile species in fragmented landscapes with relatively few protected sites.

Page Thumbnails

  • Thumbnail: Page 
[1086]
    [1086]
  • Thumbnail: Page 
1087
    1087
  • Thumbnail: Page 
1088
    1088
  • Thumbnail: Page 
1089
    1089
  • Thumbnail: Page 
1090
    1090
  • Thumbnail: Page 
1091
    1091
  • Thumbnail: Page 
1092
    1092
  • Thumbnail: Page 
1093
    1093