Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Multiple-Species Analysis of Point Count Data: A More Parsimonious Modelling Framework

Mathew W. Alldredge, Kenneth H. Pollock, Theodore R. Simons and Susan A. Shriner
Journal of Applied Ecology
Vol. 44, No. 2 (Apr., 2007), pp. 281-290
Stable URL: http://www.jstor.org/stable/4539243
Page Count: 10
  • Read Online (Free)
  • Download ($18.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Multiple-Species Analysis of Point Count Data: A More Parsimonious Modelling Framework
Preview not available

Abstract

1. Although population surveys often provide information on multiple species, these data are rarely analysed within a multiple-species framework despite the potential for more efficient estimation of population parameters. 2. We have developed a multiple-species modelling framework that uses similarities in capture/detection processes among species to model multiple species data more parsimoniously. We present examples of this approach applied to distance, time of detection and multiple observer sampling for avian point count data. 3. Models that included species as a covariate and individual species effects were generally selected as the best models for distance sampling, but group models without species effects performed best for the time of detection and multiple observer methods. Population estimates were more precise for no-species-effect models than for species-effect models, demonstrating the benefits of exploiting species' similarities when modelling multiple species data. Partial species-effect models and additive models were also useful because they modelled similarities among species while allowing for species differences. 4. Synthesis and applications. We recommend the adoption of multiple-species modelling because of its potential for improved population estimates. This framework will be particularly beneficial for modelling count data from rare species because information on the detection process can be 'borrowed' from more common species. The multiple-species modelling framework presented here is applicable to a wide range of sampling techniques and taxa.

Page Thumbnails

  • Thumbnail: Page 
[281]
    [281]
  • Thumbnail: Page 
282
    282
  • Thumbnail: Page 
283
    283
  • Thumbnail: Page 
284
    284
  • Thumbnail: Page 
285
    285
  • Thumbnail: Page 
[286]
    [286]
  • Thumbnail: Page 
[287]
    [287]
  • Thumbnail: Page 
288
    288
  • Thumbnail: Page 
289
    289
  • Thumbnail: Page 
290
    290