Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

A Monte Carlo Maximum Likelihood Method for Estimating Uncertainty Arising from Shared Errors in Exposures in Epidemiological Studies of Nuclear Workers

Leslie Stayner, Martine Vrijheid, Elisabeth Cardis, Daniel O. Stram, Isabelle Deltour, Stephen J. Gilbert and Geoffrey Howe
Radiation Research
Vol. 168, No. 6 (Dec., 2007), pp. 757-763
Stable URL: http://www.jstor.org/stable/4540793
Page Count: 7
  • Read Online (Free)
  • Download ($10.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
A Monte Carlo Maximum Likelihood Method for Estimating Uncertainty Arising from Shared Errors in Exposures in Epidemiological Studies of Nuclear Workers
Preview not available

Abstract

Errors in the estimation of exposures or doses are a major source of uncertainty in epidemiological studies of cancer among nuclear workers. This paper presents a Monte Carlo maximum likelihood method that can be used for estimating a confidence interval that reflects both statistical sampling error and uncertainty in the measurement of exposures. The method is illustrated by application to an analysis of all cancer (excluding leukemia) mortality in a study of nuclear workers at the Oak Ridge National Laboratory (ORNL). Monte Carlo methods were used to generate 10,000 data sets with a simulated corrected dose estimate for each member of the cohort based on the estimated distribution of errors in doses. A Cox proportional hazards model was applied to each of these simulated data sets. A partial likelihood, averaged over all of the simulations, was generated; the central risk estimate and confidence interval were estimated from this partial likelihood. The conventional unsimulated analysis of the ORNL study yielded an excess relative risk (ERR) of 5.38 per Sv (90% confidence interval 0.54-12.58). The Monte Carlo maximum likelihood method yielded a slightly lower ERR (4.82 per Sv) and wider confidence interval (0.41-13.31).

Page Thumbnails

  • Thumbnail: Page 
757
    757
  • Thumbnail: Page 
758
    758
  • Thumbnail: Page 
759
    759
  • Thumbnail: Page 
760
    760
  • Thumbnail: Page 
761
    761
  • Thumbnail: Page 
762
    762
  • Thumbnail: Page 
763
    763