Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

β -Lactam Synthetase: A New Biosynthetic Enzyme

Brian O. Bachmann, Rongfeng Li and Craig A. Townsend
Proceedings of the National Academy of Sciences of the United States of America
Vol. 95, No. 16 (Aug. 4, 1998), pp. 9082-9086
Stable URL: http://www.jstor.org/stable/45431
Page Count: 5
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
β -Lactam Synthetase: A New Biosynthetic Enzyme
Preview not available

Abstract

The principal cause of bacterial resistance to penicillin and other β -lactam antibiotics is the acquisition of plasmid-encoded β -lactamases, enzymes that catalyze hydrolysis of the β -lactam bond and render these antibiotics inactive. Clavulanic acid is a potent inhibitor of β -lactamases and has proven clinically effective in combating resistant infections. Although clavulanic acid and penicillin share marked structural similarities, the biosyntheses of their bicyclic nuclei are wholly dissimilar. In contrast to the efficient iron-mediated oxidative cyclization of a tripeptide to isopenicillin N, the critical β -lactam ring of clavulanic acid is demonstrated to form by intramolecular closure catalyzed by a new type of ATP/Mg2+-dependent enzyme, a β -lactam synthetase (β -LS). Insertional inactivation of its encoding gene in wild-type Streptomyces clavuligerus resulted in complete loss of clavulanic acid production and the accumulation of N2-(carboxyethyl)-L-arginine (CEA). Chemical complementation of this blocked mutant with authentic deoxyguanidino-proclavaminic acid (DGPC), the expected product of the β -LS, restored clavulanic acid synthesis. Finally, overexpression of this gene gave the β -LS, which was shown to mediate the conversion of CEA to DGPC in the presence of ATP/Mg2+. Primary amino acid sequence comparisons suggest that this mode of β -lactam formation could be more widely spread in nature and mechanistically related to asparagine synthesis.

Page Thumbnails

  • Thumbnail: Page 
9082
    9082
  • Thumbnail: Page 
9083
    9083
  • Thumbnail: Page 
9084
    9084
  • Thumbnail: Page 
9085
    9085
  • Thumbnail: Page 
9086
    9086