Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

On an Adaptive Version of the Metropolis-Hastings Algorithm with Independent Proposal Distribution

Jørund Gåsemyr
Scandinavian Journal of Statistics
Vol. 30, No. 1 (Mar., 2003), pp. 159-173
Stable URL: http://www.jstor.org/stable/4616755
Page Count: 15
  • Read Online (Free)
  • Download ($12.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
On an Adaptive Version of the Metropolis-Hastings Algorithm with Independent Proposal Distribution
Preview not available

Abstract

In this paper, we present a general formulation of an algorithm, the adaptive independent chain (AIC), that was introduced in a special context in Gåsemyr et al. [Methodol. Comput. Appl. Probab. 3 (2001)]. The algorithm aims at producing samples from a specific target distribution Π, and is an adaptive, non-Markovian version of the Metropolis-Hastings independent chain. A certain parametric class of possible proposal distributions is fixed, and the parameters of the proposal distribution are updated periodically on the basis of the recent history of the chain, thereby obtaining proposals that get ever closer to Π. We show that under certain conditions, the algorithm produces an exact sample from Π in a finite number of iterations, and hence that it converges to Π. We also present another adaptive algorithm, the componentwise adaptive independent chain (CAIC), which may be an alternative in particular in high dimensions. The CAIC may be regarded as an adaptive approximation to the Gibbs sampler updating parametric approximations to the conditionals of Π.

Page Thumbnails

  • Thumbnail: Page 
[159]
    [159]
  • Thumbnail: Page 
160
    160
  • Thumbnail: Page 
161
    161
  • Thumbnail: Page 
162
    162
  • Thumbnail: Page 
163
    163
  • Thumbnail: Page 
164
    164
  • Thumbnail: Page 
165
    165
  • Thumbnail: Page 
166
    166
  • Thumbnail: Page 
167
    167
  • Thumbnail: Page 
168
    168
  • Thumbnail: Page 
169
    169
  • Thumbnail: Page 
170
    170
  • Thumbnail: Page 
171
    171
  • Thumbnail: Page 
172
    172
  • Thumbnail: Page 
173
    173