Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Medium-Term Bioassays for Carcinogenicity of Chemical Mixtures

Nobuyuki Ito, Katsumi Imaida, Masao Hirose and Tomoyuki Shirai
Environmental Health Perspectives
Vol. 106, Supplement 6 (Dec., 1998), pp. 1331-1336
Stable URL: http://www.jstor.org/stable/4641198
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Medium-Term Bioassays for Carcinogenicity of Chemical Mixtures
Preview not available

Abstract

Carcinogenic effects of chemical mixtures were examined with a medium-term liver bioassay for carcinogens or a multiorgan medium-term bioassay using male F344 rats. In the medium-term liver bioassay, rats were initially treated with diethylnitrosamine (DEN) at 200 mg/kg body weight, ip; after 2 weeks they received chemical mixtures such as 10 different heterocyclic amines at one-tenth or one-hundredth the dose levels used in carcinogenicity studies and the mixtures of 20 different pesticides, each at acceptable daily intake (ADI) levels or a mixture of 100 times ADI levels. All animals were subjected to two-thirds partial hepatectomy at week 3 and were sacrificed at week 8. The numbers and areas of glutathione S-transferase placental form (GST-P) positive foci (preneoplastic lesions in the liver) were compared between respective groups. When 10 heterocyclic amines were mixed in the diet at one-tenth dose level, clear synergism was observed, but no combined effects were evident with the one-hundredth dose levels. In the pesticide experiment, treatment of rats with the 20-pesticide mixture at the ADI dose level did not enhance GST-P-positive foci. In contrast, a mixture of 100 times the ADI significantly increased those values. In a multiorgan bioassay of 28 weeks, mixtures of 40 high-volume compounds and 20 pesticides (suspected carcinogens) added together at their respective ADI levels did not enhance carcinogenesis in any organs initiated by five different carcinogens (DEN, N-methylnitrosourea, dimethylhydrazine, N-butyl-N-(4-hydroxybutyl)nitrosamine, and dihydroxy-din-propylnitrosamine) in combination. The combination effect of low dietary levels of five antioxidants, butylated hydroxyanisole, caffeic acid, sesamol, 4-methoxyphenol, and catechol, were also examined using the multiorgan bioassay. The incidence of forestomach papillomas was significantly increased only in the combination group and the results indicate that combination of the five antioxidants can exert additive/synergistic effects on tumorigenesis in the multiorgan bioassay. These results indicate that chemical mixtures at very low doses did not enhance preneoplastic lesions synergistically but the mixtures at certain doses show synergism in the target organ. The medium-term bioassays are particularly useful tools for this purpose.

Page Thumbnails

  • Thumbnail: Page 
1331
    1331
  • Thumbnail: Page 
1332
    1332
  • Thumbnail: Page 
1333
    1333
  • Thumbnail: Page 
1334
    1334
  • Thumbnail: Page 
1335
    1335
  • Thumbnail: Page 
1336
    1336