Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

A Protein Phosphatase 2C Gene, LjNPP2C1, from Lotus japonicus Induced during Root Nodule Development

Philipp Kapranov, Trine Juul Jensen, Carsten Poulsen, Frans J. De Bruijn and Krzysztof Szczyglowski
Proceedings of the National Academy of Sciences of the United States of America
Vol. 96, No. 4 (Feb. 16, 1999), pp. 1738-1743
Stable URL: http://www.jstor.org/stable/47272
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
A Protein Phosphatase 2C Gene, LjNPP2C1, from Lotus japonicus Induced during Root Nodule Development
Preview not available

Abstract

Symbiotic interactions between legumes and compatible strains of rhizobia results in root nodule formation. This new plant organ provides the unique physiological environment required for symbiotic nitrogen fixation by the bacterial endosymbiont and assimilation of this nitrogen by the plant partner. We have isolated two related genes (LjNPP2C1 and LjPP2C2) from the model legume Lotus japonicus that encode protein phosphatase type 2C (PP2C). Expression of the LjNPP2C1 gene was found to be enhanced specifically in L. japonicus nodules, whereas the LjPP2C2 gene was expressed at a similar level in nodules and roots. A glutathione S-transferase-LjNPP2C1 fusion protein was shown to have Mg2+- or Mn2+-dependent and okadaic acid-insensitive PP2C activity in vitro. A chimeric construct containing the full-length LjNPP2C1 cDNA, under the control of the Saccharomyces cerevisiae alcohol dehydrogenase promoter, was found to be able to complement a yeast PP2C-deficient mutant (pct1Δ). The transcript level of the LjNPP2C1 gene was found to increase significantly in mature nodules, and its highest expression level occurred after leghemoglobin (lb) gene induction, a molecular marker for late developmental events in nodule organogenesis. Expression of the LjNPP2C1 gene was found to be drastically altered in specific L. japonicus lines carrying monogenic-recessive mutations in symbiosis-related loci, suggesting that the product of the LjNPP2C1 gene may function at both early and late stages of nodule development.

Page Thumbnails

  • Thumbnail: Page 
1738
    1738
  • Thumbnail: Page 
1739
    1739
  • Thumbnail: Page 
1740
    1740
  • Thumbnail: Page 
1741
    1741
  • Thumbnail: Page 
1742
    1742
  • Thumbnail: Page 
1743
    1743