Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Matched Filtering in the Visual System of the Fly: Large Monopolar Cells of the Lamina are Optimized to Detect Moving Edges and Blobs

M. V. Srinivasan, R. B. Pinter and D. Osorio
Proceedings of the Royal Society of London. Series B, Biological Sciences
Vol. 240, No. 1298 (Jun. 22, 1990), pp. 279-293
Published by: Royal Society
Stable URL: http://www.jstor.org/stable/49513
Page Count: 15
  • Read Online (Free)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Matched Filtering in the Visual System of the Fly: Large Monopolar Cells of the Lamina are Optimized to Detect Moving Edges and Blobs
Preview not available

Abstract

At high levels of ambient light, large monopolar cells (LMCS) display spatially antagonistic receptive fields and a biphasic response to a brief flash of light from an axially positioned point source. In low ambient light the response becomes monophasic everywhere within the receptive field. Using the theory of matched filters, we infer that the LMCS are optimal for the detection of moving edges at high light levels, and for `blobs' in low ambient light. The spatio-temporal properties predicted by the theory are in agreement with experimental observation. At high light levels, the strong temporal inhibition, the weak, diffuse lateral inhibition, and the non-separability of the receptive field in space and time are all properties that promote the sensitivity to a moving edge. At low light levels, the lack of spatial or temporal antagonism enhances the sensitivity to a blob. Our hypothesis is reinforced by the observation that flies tend to walk toward the edges of a broad, dark vertical stripe at high light levels, but uniformly toward all regions within the stripe in low ambient light.

Page Thumbnails

  • Thumbnail: Page 
279
    279
  • Thumbnail: Page 
280
    280
  • Thumbnail: Page 
281
    281
  • Thumbnail: Page 
282
    282
  • Thumbnail: Page 
283
    283
  • Thumbnail: Page 
284
    284
  • Thumbnail: Page 
285
    285
  • Thumbnail: Page 
286
    286
  • Thumbnail: Page 
287
    287
  • Thumbnail: Page 
288
    288
  • Thumbnail: Page 
289
    289
  • Thumbnail: Page 
290
    290
  • Thumbnail: Page 
291
    291
  • Thumbnail: Page 
292
    292
  • Thumbnail: Page 
293
    293