Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Cytoplasmic Fusion and the Nature of Sexes

Laurence D. Hurst and William D. Hamilton
Proceedings: Biological Sciences
Vol. 247, No. 1320 (Mar. 23, 1992), pp. 189-194
Published by: Royal Society
Stable URL: http://www.jstor.org/stable/49526
Page Count: 6
  • Read Online (Free)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Cytoplasmic Fusion and the Nature of Sexes
Preview not available

Abstract

Binary mating types are proposed to arise in a three-stage process through selection of nuclear genes to minimize cytoplasmic gene conflict at the time of gamete fusion. In support of this view we argue that: (i) in systems with fusion of gametes, the mating type genes are typically binary and regulate cytoplasmic inheritance; (ii) binary sexes have evolved several times independently associated with fusion, although at least twice binary types have been lost, associated with a loss of fusion; further, in accordance with the theory are findings for isogamous species that (iii) close inbreeding may correlate with less than two sexes and biparental inheritance of cytoplasmic genes; and (iv) species with more than two sexes may have uniparental inheritance of cytoplasmic genes, be rare and be afflicted by deleterious cytoplasmic genes which attempt to pervert normal cytoplasmic genetics. Such facts and their rationale support a new and unified definition of sexes based on the control of the inheritance of cytoplasmic genes. For the common cases, the male sex is that which resigns attempts to contribute cytoplasmic genes to the next generation. We differentiate between sexes and the incompatibility types of ciliates, basidiomycetes, some angiosperms and a few other organisms which are independent of organelle contribution.

Page Thumbnails

  • Thumbnail: Page 
189
    189
  • Thumbnail: Page 
190
    190
  • Thumbnail: Page 
191
    191
  • Thumbnail: Page 
192
    192
  • Thumbnail: Page 
193
    193
  • Thumbnail: Page 
194
    194