Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Genotype-Environment Interactions and the Estimation of the Genomic Mutation Rate in Drosophila melanogaster

Alexey S. Kondrashov and David Houle
Proceedings: Biological Sciences
Vol. 258, No. 1353 (Dec. 22, 1994), pp. 221-227
Published by: Royal Society
Stable URL: http://www.jstor.org/stable/50084
Page Count: 7
  • Read Online (Free)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Genotype-Environment Interactions and the Estimation of the Genomic Mutation Rate in Drosophila melanogaster
Preview not available

Abstract

We have studied the relative fitnesses of three genotypes of Drosophila melanogaster in 50 environments. Two genotypes, the MA lines, had accumulated mutations in the absence of natural selection over 62 generations. The third was a related strain where selection had continued to act. The environments differed in three factors: parental density, dilution of the medium, and the temperature regime and medium composition. Our measure of fitness assessed fecundity and viability relative to a reference genotype. Both MA lines always had lower fitnesses than the selected line, but the difference increased dramatically with dilution of the medium and, especially, crowding. Under the most severe conditions, the performance of the MA lines approached 0. This increased difference in harsh conditions may be caused both by a uniform increase in the magnitude of deleterious effects of all mutations and by the exposure of mutations which are essentially neutral under benign conditions. If the second cause is important, previous experiments are likely to have underestimated the genomic deleterious mutation rate in Drosophila melanogaster more than previously thought.

Page Thumbnails

  • Thumbnail: Page 
221
    221
  • Thumbnail: Page 
222
    222
  • Thumbnail: Page 
223
    223
  • Thumbnail: Page 
224
    224
  • Thumbnail: Page 
225
    225
  • Thumbnail: Page 
226
    226
  • Thumbnail: Page 
227
    227