Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Nonlinear Interaction of Oblique Three-Dimensional Tollmien-Schlichting Waves and Longitudinal Vortices, in Channel Flows and Boundary Layers

F. T. Smith and P. Blennerhassett
Proceedings: Mathematical and Physical Sciences
Vol. 436, No. 1898 (Mar. 9, 1992), pp. 585-602
Published by: Royal Society
Stable URL: http://www.jstor.org/stable/52164
Page Count: 18
  • Read Online (Free)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Nonlinear Interaction of Oblique Three-Dimensional Tollmien-Schlichting Waves and Longitudinal Vortices, in Channel Flows and Boundary Layers
Preview not available

Abstract

The present theoretical article considers the nonlinear interaction of oblique three-dimensional Tollmien-Schlichting waves and induced or input longitudinal vortex motion, mainly for channel flow at large Reynolds numbers. Both the waves and the vortices are controlled by viscous-inviscid balancing but their respective flow structures are rather different because of the different typical timescales involved. This leads to the vortex-wave interaction being governed by nonlinear evolution equations on the vortex timescale, even though the wave amplitudes are notably small. The analogue in boundary-layer transition, addressed in a previous paper, is also re-considered here. Computational and analytical properties of the interaction equations for both channel flows and boundary layers are investigated, along with certain connections with companion studies of other vortex-wave interactions in channel flow. The nonlinear interactions in channel flow are found to lead to finite-time blow-up in amplitudes or to sustained vortex flow at large scaled times, depending on the input conditions. In particular, increasing the input amplitudes of the vortex or the wave can readily provoke blow-up even in the linearly stable regime; whereas in the case of sustained vortex flow new physical effects come into play on slightly longer timescales. Again, a very interesting feature is that the blow-up response is found to be confined to a small range of wave angles near 45 degrees relative to the original flow direction.

Page Thumbnails

  • Thumbnail: Page 
585
    585
  • Thumbnail: Page 
586
    586
  • Thumbnail: Page 
587
    587
  • Thumbnail: Page 
588
    588
  • Thumbnail: Page 
589
    589
  • Thumbnail: Page 
590
    590
  • Thumbnail: Page 
591
    591
  • Thumbnail: Page 
592
    592
  • Thumbnail: Page 
593
    593
  • Thumbnail: Page 
594
    594
  • Thumbnail: Page 
595
    595
  • Thumbnail: Page 
596
    596
  • Thumbnail: Page 
597
    597
  • Thumbnail: Page 
598
    598
  • Thumbnail: Page 
599
    599
  • Thumbnail: Page 
600
    600
  • Thumbnail: Page 
601
    601
  • Thumbnail: Page 
602
    602