Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Discrete Generations in Host--Parasitoid Models with Contrasting Life Cycles

D.M. Gordon, R.M. Nisbet, A. De Roos, W.S.C. Gurney and R.K. Stewart
Journal of Animal Ecology
Vol. 60, No. 1 (Feb., 1991), pp. 295-308
DOI: 10.2307/5461
Stable URL: http://www.jstor.org/stable/5461
Page Count: 14
  • Read Online (Free)
  • Download ($18.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Discrete Generations in Host--Parasitoid Models with Contrasting Life Cycles
Preview not available

Abstract

(1) Previous theoretical studies have shown that parasitoids are capable of producing cycles in their host populations with periods of about one host generation. These studies have modelled host--parasitoid interactions where parasitoid development proceeds independently from that of its host. (2) We present experimental results of a particular host--parasitoid association, Cadra cautella--Venturia canescens, and show that the development of the parasitoid is synchronized with that of its host. (3) The empirical evidence is used to formulate an age-structured model of an idealized host--parasitoid system where the onset of parasitoid development is dependent on the state of the host. The properties of the model are described and contrasted with a model that assumes there is no developmental synchrony in host and parasitoid life cycles. (4) Our results are similar to the findings of previous studies, showing that the differences in the behaviour of population models with and without life cycle synchrony are quantitative rather than qualitative. We show that when developmental synchrony occurs, ratios of parasitoid/host development durations must be interpreted with care, when predicting whether single generation cycles are to be expected in a particular host-parasitoid system.

Page Thumbnails

  • Thumbnail: Page 
295
    295
  • Thumbnail: Page 
296
    296
  • Thumbnail: Page 
297
    297
  • Thumbnail: Page 
298
    298
  • Thumbnail: Page 
299
    299
  • Thumbnail: Page 
300
    300
  • Thumbnail: Page 
301
    301
  • Thumbnail: Page 
302
    302
  • Thumbnail: Page 
303
    303
  • Thumbnail: Page 
304
    304
  • Thumbnail: Page 
305
    305
  • Thumbnail: Page 
306
    306
  • Thumbnail: Page 
307
    307
  • Thumbnail: Page 
308
    308