Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Population Cycles of Forest Lepidoptera: A Maternal Effect Hypothesis

Lev R. Ginzburg and Dale E. Taneyhill
Journal of Animal Ecology
Vol. 63, No. 1 (Jan., 1994), pp. 79-92
DOI: 10.2307/5585
Stable URL: http://www.jstor.org/stable/5585
Page Count: 14
  • Read Online (Free)
  • Download ($18.00)
  • Subscribe ($19.50)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Population Cycles of Forest Lepidoptera: A Maternal Effect Hypothesis
Preview not available

Abstract

1. Many species of forest Lepidoptera have cyclic population dynamics. Although there are numerous potential causes, including interactions with predators, parasitoids, pathogens, and food-plant quality, strongly density-dependent interactions are often difficult to demonstrate. Both autocorrelation analysis and attractor-reconstruction methods have recently been applied to a number of species' time series. Results suggest that complex dynamics, i.e. cycles or deterministic choas, may be more prevalent than once thought, and that higher-dimensioned models are necessary. 2. We develop a two-dimensional difference equation model that relates the average quality of individuals to patterns of abundance. The delayed density dependence is caused by transmission of quality through generations via maternal effects. We show that the maternal effect model can produce patterns of population fluctuations similar to those displayed by one class of host-parasitoid models. 3. We review empirical evidence for maternal and quality effects in dynamics of forest Lepidoptera. We fit the maternal effect and delayed logistic models to six species of forest moths for which delayed density dependence and maternal or quality effects have been found. The maternal effect model was a good predictor of the period of the oscillations for the species that we examined. We discuss why models of this type give better fits to moth cycles than do first order models with added delays.

Page Thumbnails

  • Thumbnail: Page 
79
    79
  • Thumbnail: Page 
80
    80
  • Thumbnail: Page 
81
    81
  • Thumbnail: Page 
82
    82
  • Thumbnail: Page 
83
    83
  • Thumbnail: Page 
84
    84
  • Thumbnail: Page 
85
    85
  • Thumbnail: Page 
86
    86
  • Thumbnail: Page 
87
    87
  • Thumbnail: Page 
88
    88
  • Thumbnail: Page 
89
    89
  • Thumbnail: Page 
90
    90
  • Thumbnail: Page 
91
    91
  • Thumbnail: Page 
92
    92