Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

On the Behavior of a Capillary Surface in a Wedge

Paul Concus and Robert Finn
Proceedings of the National Academy of Sciences of the United States of America
Vol. 63, No. 2 (Jun. 15, 1969), pp. 292-299
Stable URL: http://www.jstor.org/stable/59258
Page Count: 9
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
On the Behavior of a Capillary Surface in a Wedge
Preview not available

Abstract

Estimates above and below are obtained for the height of the equilibrium-free surface of a liquid when the liquid partially fills a cylindrical container whose cross section contains a corner with interior angle 2α . The surface is characterized by the condition that its mean curvature be proportional to its height above a reference plane (or, in the case of zero gravity, that the mean curvature be constant), and by the requirement that it meet the container wall with prescribed contact angle γ . It turns out that the qualitative behavior of such a surface near the vertex changes markedly, according as α + γ < 1/2π , or α + γ ≥ 1/2π . In the former case, the surface is either unbounded or fails to exist, while in the latter case every such surface is bounded. Some experimental comparisons are indicated, and an application to the problem of describing the mechanism of water rise in trees is discussed. The above results describe a limiting case among corresponding properties that hold for surfaces defined over domains with smooth boundaries. This extension is indicated, as well as a formal extension to n-dimensional surfaces; here the interest centers on the fact that it is the mean curvature of an (n-1)-dimensional boundary element that controls the local behavior of the n-dimensional solution surface.

Page Thumbnails

  • Thumbnail: Page 
[unnumbered]
    [unnumbered]
  • Thumbnail: Page 
292
    292
  • Thumbnail: Page 
293
    293
  • Thumbnail: Page 
294
    294
  • Thumbnail: Page 
295
    295
  • Thumbnail: Page 
296
    296
  • Thumbnail: Page 
297
    297
  • Thumbnail: Page 
298
    298
  • Thumbnail: Page 
299
    299