Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Cooperative Effects in Models of Steady-State Transport across Membranes, II. Oscillating Phase Transition

Terrell L. Hill and Yi-Der Chen
Proceedings of the National Academy of Sciences of the United States of America
Vol. 66, No. 1 (May 15, 1970), pp. 189-196
Stable URL: http://www.jstor.org/stable/60203
Page Count: 8
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Cooperative Effects in Models of Steady-State Transport across Membranes, II. Oscillating Phase Transition
Preview not available

Abstract

A simple model for steady-state transport of a neutral molecule across a membrane is investigated in a preliminary way. In this model, there is a possible conformation change in each membrane unit which alters the access of the binding site for the transported molecule from one bath to the other. Thus, transport cannot be accomplished without a conformation change. Furthermore, we assume a cooperative interaction between nearest-neighbor membrane units in the same conformation. Then, with suitable rate constants and bath concentrations, and if the interaction energy is large enough, the membrane will oscillate back and forth between the two conformational phases, producing a surge of flux in each cycle. The period of the cycle depends on the times necessary to nucleate the two phase transitions.

Page Thumbnails

  • Thumbnail: Page 
189
    189
  • Thumbnail: Page 
190
    190
  • Thumbnail: Page 
191
    191
  • Thumbnail: Page 
192
    192
  • Thumbnail: Page 
193
    193
  • Thumbnail: Page 
194
    194
  • Thumbnail: Page 
195
    195
  • Thumbnail: Page 
196
    196