Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Different Mechanisms of Energy Coupling for the Active Transport of Proline and Glutamine in Escherichia coli

Edward A. Berger
Proceedings of the National Academy of Sciences of the United States of America
Vol. 70, No. 5 (May, 1973), pp. 1514-1518
Stable URL: http://www.jstor.org/stable/62155
Page Count: 5
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Different Mechanisms of Energy Coupling for the Active Transport of Proline and Glutamine in Escherichia coli
Preview not available

Abstract

The ability of either glucose or D-lactate to energize active transport of amino acids in E. coli was studied in starved cells blocked at specific sites of energy metabolism. Proline uptake could be driven by either oxidative or substrate-level processes. The oxidative pathway was sensitive to cyanide but not to arsenate, and operated normally in a mutant deficient in the Ca, Mg-dependent ATPase. The substrate-level pathway, which was active with glucose but not with D-lactate as the carbon source, was sensitive to arsenate but not to cyanide, and required a functional ATPase. Uncouplers prevented the utilization of energy for proline uptake by either pathway. Energy coupling for glutamine uptake was quite different. The oxidative pathway was sensitive to cyanide and uncouplers and, in contrast with proline, required an active ATPase. The glycolytic component was resistant to cyanide and uncouplers, and functioned normally in the ATPase mutant. Arsenate abolished glutamine transport energized by either pathway. The results suggest that proline transport is driven directly by an energy-rich membrane state, which can be generated by either electron transport or ATP hydrolysis. Glutamine uptake, on the other hand, is apparently driven directly by phosphate-bond energy formed by way of oxidative or substrate-level phosphorylations.

Page Thumbnails

  • Thumbnail: Page 
1514
    1514
  • Thumbnail: Page 
1515
    1515
  • Thumbnail: Page 
1516
    1516
  • Thumbnail: Page 
1517
    1517
  • Thumbnail: Page 
1518
    1518