Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Orientation of Bacteriorhodopsin in Halobacterium halobium as Studied by Selective Proteolysis

Gerhard E. Gerber, Christopher P. Gray, Dieter Wildenauer and H. Gobind Khorana
Proceedings of the National Academy of Sciences of the United States of America
Vol. 74, No. 12 (Dec., 1977), pp. 5426-5430
Stable URL: http://www.jstor.org/stable/67368
Page Count: 5
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Orientation of Bacteriorhodopsin in Halobacterium halobium as Studied by Selective Proteolysis
Preview not available

Abstract

The orientation of bacteriorhodopsin in the purple membrane of Halobacterium halobium has been studied by proteolytic degradation of purple membrane sheets, reconstituted vesicles, and whole cells, with the following results: (i) Bacteriorhodopsin in purple membrane sheets is cleaved at a single site by Pronase or trypsin; a polypeptide segment of about 15 amino acids is lost from the carboxyl end. Carboxypeptidase A sequentially releases amino acids from the carboxyl end; the tetrapeptide sequence -Ala-Ala-Thr-Ser(COOH) was tentatively deduced for this terminus. (ii) The apomembrane, which lacks retinal, undergoes a second cleavage with trypsin releasing a fragment of approximately 6300 molecular weight from the amino terminus. (iii) Vesicles reconstituted from the purple membrane sheets and synthetic lecithins, in which the direction of proton pumping is opposite to that in the whole cells, have the carboxyl terminus of bacteriorhodopsin accessible to proteolysis. (iv) In envelope vesicles, which largely pump protons in the same direction as the whole cells, the carboxyl terminus is largely protected against proteolysis. (v) Treatment of whole cells with proteinase K hydrolyzes the cell wall proteins but has no effect on bacteriorhodopsin. However, the same treatment after lysis of the cells results in degradation of the hydrophilic region at the carboxyl terminus. The results show that the carboxyl terminus as well as the additional cleavage site near the amino terminus observed in apomembrane are on the cytoplasmic side of the purple membrane.

Page Thumbnails

  • Thumbnail: Page 
5426
    5426
  • Thumbnail: Page 
5427
    5427
  • Thumbnail: Page 
5428
    5428
  • Thumbnail: Page 
5429
    5429
  • Thumbnail: Page 
5430
    5430