Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Wave Growth in M.H.D. Generators

J. B. Heywood and J. K. Wright
Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences
Vol. 261, No. 1123, A Discussion on Advanced Methods of Energy Conversion-Magnetohydrodynamic Power Generation (Jul. 6, 1967), pp. 461-470
Published by: Royal Society
Stable URL: http://www.jstor.org/stable/73512
Page Count: 10
  • Read Online (Free)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Wave Growth in M.H.D. Generators
Preview not available

Abstract

It has been shown that in an m.h.d. generator, acoustic waves can grow due to the coupling of fluctuations in electrical conductivity, Hall parameter and thermodynamic properties of the gas, with the ohmic dissipation and electromagnetic body forces. A new analysis of this phenomenon is presented in which waves travelling at an arbitrary angle to the flow direction in a plane perpendicular to the magnetic field are considered. In contrast to McCune's (1964) treatment the thermodynamic properties are not restricted to perfect gas laws; and the condition for spatially and temporally growing waves is examined using a general dispersion relation which includes both these types of wave. We consider in detail (i) stationary waves in supersonic flow, and (ii) travelling waves in the subsonic flow found in the C.E.G.B. 200 MW thermal input generator being built at Marchwood, and a possible power station m.h.d. generator. It is found that the waves in the 200 MW rig which burns kerosene in oxygen will be damped. But in an oil-air combustion products generator for Hall parameters of order 3 or greater, it is found that stationary waves which grow rapidly may occur at Mach numbers greater than about 1· 7; and in subsonic flow waves propagating antiparallel to the steady current vector may be amplified, though the growth rate is not excessive. In noble gas m.h.d. generators these waves are more unstable than in the oil, air combustion products generator.

Page Thumbnails

  • Thumbnail: Page 
461
    461
  • Thumbnail: Page 
462
    462
  • Thumbnail: Page 
463
    463
  • Thumbnail: Page 
464
    464
  • Thumbnail: Page 
465
    465
  • Thumbnail: Page 
466
    466
  • Thumbnail: Page 
467
    467
  • Thumbnail: Page 
468
    468
  • Thumbnail: Page 
469
    469
  • Thumbnail: Page 
470
    470