Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

On The Simple Cubic Lattice Green Function

G. S. Joyce
Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences
Vol. 273, No. 1236 (Feb. 8, 1973), pp. 583-610
Published by: Royal Society
Stable URL: http://www.jstor.org/stable/74037
Page Count: 28
  • Read Online (Free)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
On The Simple Cubic Lattice Green Function
Preview not available

Abstract

The analytical properties of the simple cubic lattice Green function G(t) = $\frac{1}{\pi ^{3}}\mathop{\iiint}_{0}^{\pi}$[t-(cos x1 + cos x2 + cos x3)]-1dx1dx$_{2}$dx3 are investigated. In particular, it is shown that tG(t) can be written in the form tG(t) = [F(9, -3/4; 1/4, 3/4, 1, 1/2; 9/t2)]2, where F(a, b; α , β , γ , δ ; z) denotes a Heun function. The standard analytic continuation formulae for Heun functions are then used to derive various expansions for the Green function G-(s) $\equiv $ GR(s) + iGI(s) = $\underset \epsilon \rightarrow 0+\to{\lim}$ G(s - iε ) (0 ≤ s < ∞ ) about the points s = 0, 1 and 3. From these expansions accurate numerical values of GR(s) and GI(s) are obtained in the range 0 ≤ s ≤ 3, and certain new summation formulae for Heun functions of unit argument are deduced. Quadratic transformation formulae for the Green function G(t) are discussed, and a connexion between G(t) and the Lamé-Wangerin differential equation is established. It is also proved that G(t) can be expressed as a product of two complete elliptic integrals of the first kind. Finally, several applications of the results are made in lattice statistics.

Page Thumbnails

  • Thumbnail: Page 
583
    583
  • Thumbnail: Page 
584
    584
  • Thumbnail: Page 
585
    585
  • Thumbnail: Page 
586
    586
  • Thumbnail: Page 
587
    587
  • Thumbnail: Page 
588
    588
  • Thumbnail: Page 
589
    589
  • Thumbnail: Page 
590
    590
  • Thumbnail: Page 
591
    591
  • Thumbnail: Page 
592
    592
  • Thumbnail: Page 
593
    593
  • Thumbnail: Page 
594
    594
  • Thumbnail: Page 
595
    595
  • Thumbnail: Page 
596
    596
  • Thumbnail: Page 
597
    597
  • Thumbnail: Page 
598
    598
  • Thumbnail: Page 
599
    599
  • Thumbnail: Page 
600
    600
  • Thumbnail: Page 
601
    601
  • Thumbnail: Page 
602
    602
  • Thumbnail: Page 
603
    603
  • Thumbnail: Page 
604
    604
  • Thumbnail: Page 
605
    605
  • Thumbnail: Page 
606
    606
  • Thumbnail: Page 
607
    607
  • Thumbnail: Page 
608
    608
  • Thumbnail: Page 
609
    609
  • Thumbnail: Page 
610
    610