Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Second-Order Linear Differential Equations with Two Turning Points

F. W. J. Olver
Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences
Vol. 278, No. 1279 (Mar. 20, 1975), pp. 137-174
Published by: Royal Society
Stable URL: http://www.jstor.org/stable/74499
Page Count: 38
  • Read Online (Free)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Second-Order Linear Differential Equations with Two Turning Points
Preview not available

Abstract

Differential equations of the form d2w/dx2 = {u2f(u, a, x) + g (u, a, x)}w are considered for large values of the real parameter u. Here x is a real variable ranging over an open, possibly infinite, interval (x1, x2), and a is a bounded real parameter. It is assumed that f(u, a, x) and g(u, a, x) are free from singularity within (x1, x2), and f(u, a, x) has exactly two zeros, which depend continuously on a and coincide for a certain value of a. Except in the neighbourhoods of the zeros, g(u, a, x) is small in absolute value compared with u2f(u, a, x). By application of the Liouville transformation, the differential equation is converted into one of four standard forms, with continuous coefficients. Asymptotic approximations for the solutions are then constructed in terms of parabolic cylinder functions. These approximations are valid for large u, uniformly with respect to x ∈ (x1, x2) and also uniformly with respect to a. Each approximation is accompanied by a strict and realistic error bound. The paper also includes some new properties of parabolic cylinder functions.

Page Thumbnails

  • Thumbnail: Page 
137
    137
  • Thumbnail: Page 
138
    138
  • Thumbnail: Page 
139
    139
  • Thumbnail: Page 
140
    140
  • Thumbnail: Page 
141
    141
  • Thumbnail: Page 
142
    142
  • Thumbnail: Page 
143
    143
  • Thumbnail: Page 
144
    144
  • Thumbnail: Page 
145
    145
  • Thumbnail: Page 
146
    146
  • Thumbnail: Page 
147
    147
  • Thumbnail: Page 
148
    148
  • Thumbnail: Page 
149
    149
  • Thumbnail: Page 
150
    150
  • Thumbnail: Page 
151
    151
  • Thumbnail: Page 
152
    152
  • Thumbnail: Page 
153
    153
  • Thumbnail: Page 
154
    154
  • Thumbnail: Page 
155
    155
  • Thumbnail: Page 
156
    156
  • Thumbnail: Page 
157
    157
  • Thumbnail: Page 
158
    158
  • Thumbnail: Page 
159
    159
  • Thumbnail: Page 
160
    160
  • Thumbnail: Page 
161
    161
  • Thumbnail: Page 
162
    162
  • Thumbnail: Page 
163
    163
  • Thumbnail: Page 
164
    164
  • Thumbnail: Page 
165
    165
  • Thumbnail: Page 
166
    166
  • Thumbnail: Page 
167
    167
  • Thumbnail: Page 
168
    168
  • Thumbnail: Page 
169
    169
  • Thumbnail: Page 
170
    170
  • Thumbnail: Page 
171
    171
  • Thumbnail: Page 
172
    172
  • Thumbnail: Page 
173
    173
  • Thumbnail: Page 
174
    174