Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Finite Element Analysis of Folds

O. Stephansson
Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences
Vol. 283, No. 1312, A Discussion on Natural Strain and Geological Structure (Oct. 12, 1976), pp. 153-161
Published by: Royal Society
Stable URL: http://www.jstor.org/stable/74635
Page Count: 9
  • Read Online (Free)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Finite Element Analysis of Folds
Preview not available

Abstract

Finite element analysis of the time-dependent deformations of layered viscous solids serves as the basis of the study of the mechanics of folding. The progressive development of folds by buckling in single and multilayer models compressed parallel to the layering is reviewed. Fold geometries are shown to vary from parallel, for large viscous contrasts, to nearly similar, for low contrasts. For models with the same viscosity contrast the geometry depends upon the wavelength/thickness ratio, so that thin-layer folds behave in the most 'competent' fashion with a great amount of buckle shortening. The development of stresses around folds is discussed. As the fold grows the principal stresses rotate and the magnitude changes quite drastically for models with high viscosity contrast. These folds also have the gradient of mean stress directed perpendicular to the layer in the hinge part of the competent layer. The heterogeneous stress distribution, as it appears in a fold structure, generates a free energy gradient, and diffusion current will tend to bring the system to a state of equilibrium by one or more of the following events: (1) introduction of new mineral species; (2) polymorphic phase changes; (3) a change in chemical composition and (4) a change in grain size. Future development of the finite element analysis of folding is discussed.

Page Thumbnails

  • Thumbnail: Page 
153
    153
  • Thumbnail: Page 
154
    154
  • Thumbnail: Page 
155
    155
  • Thumbnail: Page 
156
    156
  • Thumbnail: Page 
157
    157
  • Thumbnail: Page 
158
    158
  • Thumbnail: Page 
159
    159
  • Thumbnail: Page 
160
    160
  • Thumbnail: Page 
161
    161