Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

On the Speed and Profile of Steep Solitary Waves

J. G. B. Byatt-Smith and M. S. Longuet-Higgins
Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences
Vol. 350, No. 1661 (Aug. 20, 1976), pp. 175-189
Published by: Royal Society
Stable URL: http://www.jstor.org/stable/79048
Page Count: 15
  • Read Online (Free)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
On the Speed and Profile of Steep Solitary Waves
Preview not available

Abstract

Previous estimates of the speed of solitary waves in shallow water unexpectedly showed that the speed and energy were greatest for waves of less than the maximum possible height. These calculations were based on Padé approximants. In the present paper we present some quite independent calculations based on an integral equation for the wave profile (Byatt-Smith 1970), now modified so that the wave speed appears as a dependent variable. There is remarkably good agreement with the previous method. In particular the existence of a maximum speed and energy are verified. The method also yields a more accurate profile for the free surface of steep solitary waves. As the wave amplitude increases, it is found that the point of intersection of neighbouring profiles moves up towards the crest. Hence the highest wave lies mostly beneath its neighbours, which helps to explain why its speed is less. Tables are given not only of the wave speed but also of the maximum surface slope as a function of wave amplitude. In no case does the slope exceed 30°, but for still higher waves this possibility is not excluded.

Page Thumbnails

  • Thumbnail: Page 
175
    175
  • Thumbnail: Page 
176
    176
  • Thumbnail: Page 
177
    177
  • Thumbnail: Page 
178
    178
  • Thumbnail: Page 
179
    179
  • Thumbnail: Page 
180
    180
  • Thumbnail: Page 
181
    181
  • Thumbnail: Page 
182
    182
  • Thumbnail: Page 
183
    183
  • Thumbnail: Page 
184
    184
  • Thumbnail: Page 
185
    185
  • Thumbnail: Page 
186
    186
  • Thumbnail: Page 
187
    187
  • Thumbnail: Page 
188
    188
  • Thumbnail: Page 
189
    189