Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Geometrical Model for the Energy of Semicoherent Interphase Interfaces

Roger C. Ecob and Brian Ralph
Proceedings of the National Academy of Sciences of the United States of America
Vol. 77, No. 4, [Part 1: Physical Sciences] (Apr., 1980), pp. 1749-1753
Stable URL: http://www.jstor.org/stable/8428
Page Count: 5
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Geometrical Model for the Energy of Semicoherent Interphase Interfaces
Preview not available

Abstract

The basis for the considerations given in this paper is the O-lattice description of crystalline interfaces of Bollmann. In the development of his approach presented here, all possible interfacial planes between two crystal phases having a defined orientation relationship are considered. The energies of these interfaces are then computed in terms of the energies of the primary intrinsic dislocations. A number of modeling interactions are incorporated into this approach, and a better agreement with experimental data is thus obtained.

Page Thumbnails

  • Thumbnail: Page 
1749
    1749
  • Thumbnail: Page 
1750
    1750
  • Thumbnail: Page 
1751
    1751
  • Thumbnail: Page 
1752
    1752
  • Thumbnail: Page 
1753
    1753