Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

The Respiration Climacteric in Apple Fruits

A. C. Hulme, J. D. Jones and L. S. C. Wooltorton
Proceedings of the Royal Society of London. Series B, Biological Sciences
Vol. 158, No. 973 (Nov. 19, 1963), pp. 514-535
Published by: Royal Society
Stable URL: http://www.jstor.org/stable/90473
Page Count: 22
  • Read Online (Free)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
The Respiration Climacteric in Apple Fruits
Preview not available

Abstract

Theories concerning the immediate origin of the increased rate of respiration at the climacteric in apples have been largely centred round an increase in mitochondrial activity (Hatch, Pearson, Millerd & Robertson 1959) probably because an increase in energy is required for synthetic processes occurring at this time (Pearson & Robertson 1954; Hulme 1954). Alternatively, it has been suggested (Millerd, Bonner & Biale 1953) that the close coupling between oxidation and phosphorylation in the mitochondrial system is destroyed during the climacteric period so that the respiration becomes uncontrolled. An improved method is used here for the isolation of mitochondria and soluble enzymes from apple tissue which obviates the inhibition of enzyme action by polyphenolic compounds present in the tissue. The potential activity of isolated mitochondria increases over the climacteric, especially in the peel tissue, and the increase commences some days before any rise in CO2 production of whole fruit is observed. In fruit detached from the tree before the climacteric has commenced, the climacteric is accompanied by a steep rise in the activity of malic enzyme and pyruvic carboxylase, particularly in the peel of fruit. After the climacteric peak, respiration rate and activity of malic enzyme and carboxylase fall, the changes running parallel particularly in the peel. The origin of the climacteric in fruit both 'on' and 'off' the tree, it is suggested, is due to an increase in activity-a synthesis, in fact-of malic enzyme and carboxylase, the source of energy for this synthesis being mitochondrial activity. This would also account for the increase in the respiratory quotient over the climacteric. The higher respiration rate of fruit at the climacteric peak on the tree (one-third more CO2 production than in detached fruit) which is associated with a peculiar wateriness of the pulp, is due, it is claimed, to an increased permeability of the pulp tissue which allows a more rapid union between enzymes and substrates. The fall in respiration after the climacteric peak in storage (it has not been possible to follow post-climacteric changes in fruit on the tree) is attributed to a decrease in the activity of malic enzyme, carboxylase and the mitochondrial system operating the Krebs cycle; finally acid substrate becomes limiting. There is no evidence of an uncoupling, in the mitochondria, of oxidation and phosphorylation over the climacteric period.

Page Thumbnails

  • Thumbnail: Page 
514
    514
  • Thumbnail: Page 
515
    515
  • Thumbnail: Page 
516
    516
  • Thumbnail: Page 
517
    517
  • Thumbnail: Page 
518
    518
  • Thumbnail: Page 
519
    519
  • Thumbnail: Page 
520
    520
  • Thumbnail: Page 
521
    521
  • Thumbnail: Page 
522
    522
  • Thumbnail: Page 
523
    523
  • Thumbnail: Page 
524
    524
  • Thumbnail: Page 
525
    525
  • Thumbnail: Page 
526
    526
  • Thumbnail: Page 
527
    527
  • Thumbnail: Page 
528
    528
  • Thumbnail: Page 
529
    529
  • Thumbnail: Page 
530
    530
  • Thumbnail: Page 
531
    531
  • Thumbnail: Page 
532
    532
  • Thumbnail: Page 
533
    533
  • Thumbnail: Page 
534
    534
  • Thumbnail: Page 
535
    535