Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Uniform Polyhedra

H. S. M. Coxeter, M. S. Longuet-Higgins and J. C. P. Miller
Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences
Vol. 246, No. 916 (May 13, 1954), pp. 401-450
Published by: Royal Society
Stable URL: http://www.jstor.org/stable/91532
Page Count: 56
  • Read Online (Free)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Uniform Polyhedra
Preview not available

Abstract

Uniform polyhedra have regular faces meeting in the same manner at every vertex. Besides the five Platonic solids, the thirteen Archimedean solids, the four regular star-polyhedra of Kepler (1619) and Poinsot (1810), and the infinite families of prisms and antiprisms, there are at least fifty-three others, forty-one of which were discovered by Badoureau (1881) and Pitsch (1881). The remaining twelve were discovered by two of the present authors (H.S.M.C. and J.C.P.M.) between 1930 and 1932, but publication was postponed in the hope of obtaining a proof that there are no more. Independently, between 1942 and 1944, the third author (M.S.L.-H.) in collaboration with H. C. Longuet-Higgins, rediscovered eleven of the twelve. We now believe that further delay is pointless; we have temporarily abandoned our hope of obtaining a proof that our enumeration is complete, but we shall be much surprised if any new uniform polyhedron is found in the future. We have classified the known figures with the aid of a systematic notation and we publish drawings (by J.C.P.M.) and photographs of models (by M.S.L.-H.) which include all those not previously constructed. One remarkable new polyhedron is contained in the present list, having eight edges at a vertex. This is the only one which cannot be derived immediately from a spherical triangle by Wythoff's construction.

Page Thumbnails

  • Thumbnail: Page 
401
    401
  • Thumbnail: Page 
402
    402
  • Thumbnail: Page 
403
    403
  • Thumbnail: Page 
404
    404
  • Thumbnail: Page 
405
    405
  • Thumbnail: Page 
406
    406
  • Thumbnail: Page 
407
    407
  • Thumbnail: Page 
408
    408
  • Thumbnail: Page 
409
    409
  • Thumbnail: Page 
410
    410
  • Thumbnail: Page 
411
    411
  • Thumbnail: Page 
412
    412
  • Thumbnail: Page 
413
    413
  • Thumbnail: Page 
414
    414
  • Thumbnail: Page 
415
    415
  • Thumbnail: Page 
416
    416
  • Thumbnail: Page 
417
    417
  • Thumbnail: Page 
418
    418
  • Thumbnail: Page 
419
    419
  • Thumbnail: Page 
420
    420
  • Thumbnail: Page 
421
    421
  • Thumbnail: Page 
422
    422
  • Thumbnail: Page 
423
    423
  • Thumbnail: Page 
424
    424
  • Thumbnail: Page 
425
    425
  • Thumbnail: Page 
426
    426
  • Thumbnail: Page 
427
    427
  • Thumbnail: Page 
428
    428
  • Thumbnail: Page 
429
    429
  • Thumbnail: Page 
430
    430
  • Thumbnail: Page 
431
    431
  • Thumbnail: Page 
432
    432
  • Thumbnail: Page 
433
    433
  • Thumbnail: Page 
434
    434
  • Thumbnail: Page 
435
    435
  • Thumbnail: Page 
436
    436
  • Thumbnail: Page 
437
    437
  • Thumbnail: Page 
438
    438
  • Thumbnail: Page 
439
    439
  • Thumbnail: Page 
440
    440
  • Thumbnail: Page 
441
    441
  • Thumbnail: Page 
442
    442
  • Thumbnail: Page 
443
    443
  • Thumbnail: Page 
444
    444
  • Thumbnail: Page 
445
    445
  • Thumbnail: Page 
446
    446
  • Thumbnail: Page 
447
    447
  • Thumbnail: Page 
448
    448
  • Thumbnail: Page 
449
    449
  • Thumbnail: Page 
450
    450
  • Thumbnail: Page 
[unnumbered]
    [unnumbered]
  • Thumbnail: Page 
[unnumbered]
    [unnumbered]
  • Thumbnail: Page 
[unnumbered]
    [unnumbered]
  • Thumbnail: Page 
[unnumbered]
    [unnumbered]
  • Thumbnail: Page 
[unnumbered]
    [unnumbered]
  • Thumbnail: Page 
[unnumbered]
    [unnumbered]